Dirac cohomology for symplectic reflection algebras

被引:21
作者
Ciubotaru, Dan [1 ]
机构
[1] Univ Oxford, Math Inst, Oxford OX2 6GG, England
来源
SELECTA MATHEMATICA-NEW SERIES | 2016年 / 22卷 / 01期
关键词
RATIONAL CHEREDNIK ALGEBRAS; AFFINE HECKE ALGEBRAS; CALOGERO-MOSER SPACE; DISCRETE SERIES; REPRESENTATIONS; CHARACTERS; OPERATOR; SYSTEMS;
D O I
10.1007/s00029-015-0189-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define uniformly the notions of Dirac operators and Dirac cohomology in the framework of the Hecke algebras introduced by Drinfeld (Anal i Prilozhen 20(1):69-70, 1986). We generalize in this way, the Dirac cohomology theory for Lusztig's graded affine Hecke algebras defined in Barbasch et al. (Acta Math 209(2):197-227, 2012) and further developed in Barbasch et al. (Acta Math 209(2):197-227, 2012), Ciubotaru et al. (J Inst Math Jussieu 13(3):447-486, 2014), Ciubotaru (J Reine Angew Math 671:199-222, 2012), Ciubotaru and He (Green polynomials of Weyl groups, elliptic pairings, and the extended Dirac index, Adv. Math. 283:1-50, 2015), Chan (On a twisted Euler-Poincar, pairing for graded affine Hecke algebras, preprint 2014,. We apply these constructions to the case of the symplectic reflection algebras defined by Etingof and Ginzburg (Invent Math 147:243-348, 2002), particularly to rational Cherednik algebras for real or complex reflection groups. As applications, we give criteria for unitarity of modules in category and we show that the 0-fiber of the Calogero-Moser space admits a description in terms of a certain "Dirac morphism" originally defined by Vogan for representations of real reductive groups.
引用
收藏
页码:111 / 144
页数:34
相关论文
共 50 条
[41]   Hochschild Cohomology and Deformations of Clifford-Weyl Algebras [J].
Musson, Ian M. ;
Pinczon, Georges ;
Ushirobira, Rosane .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2009, 5
[42]   Dirac cohomology and translation functors (vol 375, pg 328, 2013) [J].
Mehdi, S. ;
Pandzic, P. .
JOURNAL OF ALGEBRA, 2016, 451 :577-582
[43]   Deformations of symplectic singularities and orbit method for semisimple Lie algebras [J].
Losev, Ivan .
SELECTA MATHEMATICA-NEW SERIES, 2022, 28 (02)
[44]   Symplectic structures, product structures and complex structures on Leibniz algebras [J].
Tang, Rong ;
Xu, Nanyan ;
Sheng, Yunhe .
JOURNAL OF ALGEBRA, 2024, 647 :710-743
[45]   Cohomology, derivations and abelian extensions of 3-Lie algebras [J].
Xu, Senrong .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2019, 18 (07)
[46]   Cohomology and Abelian Extensions of 3-Bihom-Lie Algebras [J].
Li, Juan ;
Chen, Liangyun .
FRONTIERS OF MATHEMATICS, 2025,
[47]   Group actions on algebras and the graded Lie structure of Hochschild cohomology [J].
Shepler, Anne V. ;
Witherspoon, Sarah .
JOURNAL OF ALGEBRA, 2012, 351 (01) :350-381
[48]   A new cohomology theory for strict Lie 2-algebras [J].
Angulo, Camilo .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2022, 24 (03)
[49]   Experimental Distributions of the Reflection Amplitude for Networks with Unitary and Symplectic Symmetries [J].
Lawniczak, M. ;
Akhshani, A. ;
Farooq, O. ;
Bauch, S. ;
Sirko, L. .
ACTA PHYSICA POLONICA A, 2023, 144 (06) :469-473
[50]   On Residual Cohomology Classes Attached to Relative Rank One Eisenstein Series for the Symplectic Group [J].
Grbac, Neven ;
Schwermer, Joachim .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (07) :1654-1705