Dirac cohomology for symplectic reflection algebras

被引:21
作者
Ciubotaru, Dan [1 ]
机构
[1] Univ Oxford, Math Inst, Oxford OX2 6GG, England
来源
SELECTA MATHEMATICA-NEW SERIES | 2016年 / 22卷 / 01期
关键词
RATIONAL CHEREDNIK ALGEBRAS; AFFINE HECKE ALGEBRAS; CALOGERO-MOSER SPACE; DISCRETE SERIES; REPRESENTATIONS; CHARACTERS; OPERATOR; SYSTEMS;
D O I
10.1007/s00029-015-0189-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define uniformly the notions of Dirac operators and Dirac cohomology in the framework of the Hecke algebras introduced by Drinfeld (Anal i Prilozhen 20(1):69-70, 1986). We generalize in this way, the Dirac cohomology theory for Lusztig's graded affine Hecke algebras defined in Barbasch et al. (Acta Math 209(2):197-227, 2012) and further developed in Barbasch et al. (Acta Math 209(2):197-227, 2012), Ciubotaru et al. (J Inst Math Jussieu 13(3):447-486, 2014), Ciubotaru (J Reine Angew Math 671:199-222, 2012), Ciubotaru and He (Green polynomials of Weyl groups, elliptic pairings, and the extended Dirac index, Adv. Math. 283:1-50, 2015), Chan (On a twisted Euler-Poincar, pairing for graded affine Hecke algebras, preprint 2014,. We apply these constructions to the case of the symplectic reflection algebras defined by Etingof and Ginzburg (Invent Math 147:243-348, 2002), particularly to rational Cherednik algebras for real or complex reflection groups. As applications, we give criteria for unitarity of modules in category and we show that the 0-fiber of the Calogero-Moser space admits a description in terms of a certain "Dirac morphism" originally defined by Vogan for representations of real reductive groups.
引用
收藏
页码:111 / 144
页数:34
相关论文
共 50 条
[31]   Invariance of symplectic cohomology and twisted cotangent bundles over surfaces [J].
Benedetti, Gabriele ;
Ritter, Alexander F. .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2020, 31 (09)
[32]   DIRAC COHOMOLOGY AND THE BOTTOM LAYER K-TYPES [J].
Pandzic, Pavle .
GLASNIK MATEMATICKI, 2010, 45 (02) :453-460
[33]   HIGHER DIRAC COHOMOLOGY OF MODULES WITH GENERALIZED INFINITESIMAL CHARACTER [J].
Pandzic, Pavle ;
Somberg, Petr .
TRANSFORMATION GROUPS, 2016, 21 (03) :803-819
[34]   Dirac cohomology on manifolds with boundary and spectral lower bounds [J].
Farinelli, Simone .
PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2023, 4 (06)
[35]   Dirac Reduction for Poisson Vertex Algebras [J].
De Sole, Alberto ;
Kac, Victor G. ;
Valeri, Daniele .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 331 (03) :1155-1190
[36]   Cohomology and deformations of modified Rota-Baxter Lie-Yamaguti algebras [J].
Basdouri, Khaled ;
Benabdelhafidh, Sami .
COMPTES RENDUS MATHEMATIQUE, 2025, 363
[38]   CONSTRUCTIONS AND COHOMOLOGY OF HOM-LIE COLOR ALGEBRAS [J].
Abdaoui, K. ;
Ammar, F. ;
Makhlouf, A. .
COMMUNICATIONS IN ALGEBRA, 2015, 43 (11) :4581-4612
[39]   Cohomology of finite-dimensional pointed Hopf algebras [J].
Mastnak, M. ;
Pevtsova, J. ;
Schauenburg, P. ;
Witherspoon, S. .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2010, 100 :377-404
[40]   Separation of variables for quadratic algebras: Algebras of Maillet and reflection-equation algebras [J].
Skrypnyk, T. .
JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (08)