Dirac cohomology for symplectic reflection algebras

被引:21
作者
Ciubotaru, Dan [1 ]
机构
[1] Univ Oxford, Math Inst, Oxford OX2 6GG, England
来源
SELECTA MATHEMATICA-NEW SERIES | 2016年 / 22卷 / 01期
关键词
RATIONAL CHEREDNIK ALGEBRAS; AFFINE HECKE ALGEBRAS; CALOGERO-MOSER SPACE; DISCRETE SERIES; REPRESENTATIONS; CHARACTERS; OPERATOR; SYSTEMS;
D O I
10.1007/s00029-015-0189-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define uniformly the notions of Dirac operators and Dirac cohomology in the framework of the Hecke algebras introduced by Drinfeld (Anal i Prilozhen 20(1):69-70, 1986). We generalize in this way, the Dirac cohomology theory for Lusztig's graded affine Hecke algebras defined in Barbasch et al. (Acta Math 209(2):197-227, 2012) and further developed in Barbasch et al. (Acta Math 209(2):197-227, 2012), Ciubotaru et al. (J Inst Math Jussieu 13(3):447-486, 2014), Ciubotaru (J Reine Angew Math 671:199-222, 2012), Ciubotaru and He (Green polynomials of Weyl groups, elliptic pairings, and the extended Dirac index, Adv. Math. 283:1-50, 2015), Chan (On a twisted Euler-Poincar, pairing for graded affine Hecke algebras, preprint 2014,. We apply these constructions to the case of the symplectic reflection algebras defined by Etingof and Ginzburg (Invent Math 147:243-348, 2002), particularly to rational Cherednik algebras for real or complex reflection groups. As applications, we give criteria for unitarity of modules in category and we show that the 0-fiber of the Calogero-Moser space admits a description in terms of a certain "Dirac morphism" originally defined by Vogan for representations of real reductive groups.
引用
收藏
页码:111 / 144
页数:34
相关论文
共 50 条
[21]   THE DIRAC COHOMOLOGY OF A FINITE DIMENSIONAL REPRESENTATION [J].
Mehdi, S. ;
Zierau, R. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (05) :1507-1512
[22]   Decomposing Tensor Product by Dirac Cohomology [J].
Huang, Jing-Song .
TRANSFORMATION GROUPS, 2024,
[23]   Dirac cohomology of highest weight modules [J].
Huang, Jing-Song ;
Xiao, Wei .
SELECTA MATHEMATICA-NEW SERIES, 2012, 18 (04) :803-824
[24]   Dirac Cohomology and Θ-correspondence for Complex Dual Pairs [J].
Afentoulidis-Almpanis, S. ;
Liu, G. ;
Mehdi, S. .
ALGEBRAS AND REPRESENTATION THEORY, 2025, 28 (01) :337-352
[25]   Cohomology of symplectic groups and Meyer's signature theorem [J].
Benson, Dave ;
Campagnolo, Caterina ;
Ranicki, Andrew ;
Rovi, Carmen .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2018, 18 (07) :4069-4091
[26]   DIRAC COHOMOLOGY AND ORTHOGONALITY RELATIONS FOR WEIGHT MODULES [J].
Huang, Jing-Song ;
Xiao, Wei .
PACIFIC JOURNAL OF MATHEMATICS, 2022, 319 (01) :129-152
[27]   Structure of symplectic invariant Lie subalgebras of symplectic derivation Lie algebras [J].
Morita, Shigeyuki ;
Sakasai, Takuya ;
Suzuki, Masaaki .
ADVANCES IN MATHEMATICS, 2015, 282 :291-334
[28]   Deformation and Hochschild cohomology of coisotropic algebras [J].
Dippell, Marvin ;
Esposito, Chiara ;
Waldmann, Stefan .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (03) :1295-1323
[29]   Reflection equation algebras, coideal subalgebras, and their centres [J].
Kolb, Stefan ;
Stokman, Jasper V. .
SELECTA MATHEMATICA-NEW SERIES, 2009, 15 (04) :621-664
[30]   DIRAC COHOMOLOGY OF SOME HARISH-CHANDRA MODULES [J].
Huang, Jing-Song ;
Kang, Yi-Fang ;
Pandzic, Pavle .
TRANSFORMATION GROUPS, 2009, 14 (01) :163-173