Two inequalities of unitarily invariant norms for matrices

被引:3
作者
Wu, Xuesha [1 ]
机构
[1] Chongqing Coll Elect Engn, Sch Gen & Int Educ, Chongqing 401331, Peoples R China
来源
SCIENCEASIA | 2019年 / 45卷 / 04期
关键词
arithmetic-geometric mean inequality; Kantorovich constant; unitarily invariant norms;
D O I
10.2306/scienceasia1513-1874.2019.45.395
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we present two inequalities of matrix norms. The first one is a generalization of the inequality shown in [J Math Inequal 10 (2016) 1119-1122], and the second one is a refinement of an inequality obtained by Zou [Numer Math J Chinese Univ 38 (2016) 343-349].
引用
收藏
页码:395 / 397
页数:3
相关论文
共 12 条
[1]   Notes on matrix arithmetic-geometric mean inequalities [J].
Bhatia, R ;
Kittaneh, F .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 308 (1-3) :203-211
[2]  
Furuichi S., 2012, Journal of the Egyptian Mathematical Society, V20, P46, DOI DOI 10.1016/J.J0EMS.2011.12.010
[3]   ON REFINED YOUNG INEQUALITIES AND REVERSE INEQUALITIES [J].
Furuichi, Shigeru .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2011, 5 (01) :21-31
[4]   A note on reverses of Young type inequalities [J].
Hu, Xingkai ;
Xue, Jianming .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
[5]   SOME INEQUALITIES FOR UNITARILY INVARIANT NORMS [J].
Hu, Xingkai .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2012, 6 (04) :615-623
[6]   Rotfel'd type inequalities for norms [J].
Lee, Eun-Young .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (03) :580-584
[7]  
TOMINAGA M., 2002, Sci. Math. Jpn., V55, P583
[8]  
Xing-Kai H., 2012, J. East China Normal Univ. (Nat. Sci.), V2012, P12, DOI [10.3969/j.issn.1000-5641.2012.04.002, DOI 10.3969/J.ISSN.1000-5641.2012.04.002]
[9]   Unification of the arithmetic-geometric mean and Holder inequalities for unitarily invariant norms [J].
Zou, Limin .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 562 :154-162
[10]  
[邹黎敏 Zou Limin], 2016, [高等学校计算数学学报, Numerical Mathematics A Journal of Chinese University], V38, P343