Ionic polymer-metal composites for underwater operation

被引:46
|
作者
Kim, Kwang J. [1 ]
Yim, Woosoon
Paquette, Jason W.
Kim, Doyeon
机构
[1] Univ Nevada, Dept Mech Engn MS312, Act Mat & Proc Lab, Reno, NV 89557 USA
[2] Univ Nevada, Dept Mech Engn, Las Vegas, NV 89154 USA
关键词
ionic polymer-metal composite; autonomous underwater vehicles;
D O I
10.1177/1045389X06063468
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The ionic polymer-metal composite (IPMC) for flexible hydrodynamic propulsor blades can provide many new opportunities in navy platforms, especially in unmanned, robotic vehicles used in surveillance and combat. When in operation, the IPMC materials are very quiet since they have no vibration causing components, i.e., gears, motors, shafts, etc. For small autonomous underwater vehicles (AUV), this feature is truly attractive. IPMCs are friendly to solid-state electronics and have digital programming capabilities; thus, active control is possible. Another advantage of these materials is that they can be operational in a self-oscillatory manner. However, there are several issues that still need to be addressed: propulsor design, testing, robotic control, and the theoretical modeling of the appropriate design. Currently, the IPMC is being investigated for propulsor blade applications and a propulsor model with a robust control scheme. An analytical model of a segmented IPMC propulsor was formulated to be a building block for accommodating the relaxation behavior of IPMCs and for describing the dynamics of the flexible IPMC bending actuator.
引用
收藏
页码:123 / 131
页数:9
相关论文
共 50 条
  • [21] Tailoring the actuation of ionic polymer-metal composites
    Nemat-Nasser, Sia
    Wu, Yongxian
    SMART MATERIALS AND STRUCTURES, 2006, 15 (04) : 909 - 923
  • [22] Shape memory properties of ionic polymer-metal composites
    Rossiter, Jonathan
    Takashima, Kazuto
    Mukai, Toshiharu
    SMART MATERIALS AND STRUCTURES, 2012, 21 (11)
  • [23] IONIC POLYMER-METAL COMPOSITES (IPMCs) AS IMPACT SENSORS
    Seidi, M.
    Hajiaghamemar, M.
    Tabatabaie, E.
    Shahinpoor, M.
    ASME CONFERENCE ON SMART MATERIALS, ADAPTIVE STRUCTURES AND INTELLIGENT SYSTEMS, 2015, VOL 1, 2016,
  • [24] Adaptive intelligent control of ionic polymer-metal composites
    Lavu, BC
    Schoen, MP
    Mahajan, A
    SMART MATERIALS AND STRUCTURES, 2005, 14 (04) : 466 - 474
  • [25] Fluid flow sensing with ionic polymer-metal composites
    Stalbaum, Tyler
    Trabia, Sarah
    Shen, Qi
    Kim, Kwang J.
    ELECTROACTIVE POLYMER ACTUATORS AND DEVICES (EAPAD) 2016, 2016, 9798
  • [26] A model of ionic polymer-metal composite actuators in underwater operations
    Brunetto, Paola
    Fortuna, Luigi
    Graziani, Salvatore
    Strazzeri, Salvatore
    SMART MATERIALS AND STRUCTURES, 2008, 17 (02)
  • [27] Ionic polymer-metal composites - Fundamentals and phenomenological modeling
    Shahinpoor, M
    Kim, KJ
    SMART STRUCTURES AND MATERIALS 2002: ELECTROACTIVE POLYMER ACTUATORS AND DEVICES (EAPAD), 2002, 4695 : 294 - 302
  • [28] Introduction to the themed articles on ionic polymer-metal composites
    Kim, Kwang J.
    Leang, Kam K.
    INTERNATIONAL JOURNAL OF SMART AND NANO MATERIALS, 2012, 3 (03) : 183 - 187
  • [29] Ionic polymer-metal composites: I. Fundamentals
    Shahinpoor, M
    Kim, KJ
    SMART MATERIALS AND STRUCTURES, 2001, 10 (04) : 819 - 833
  • [30] Operation Characteristics of Ionic Polymer-Metal Composite Using Ionic Liquids
    Kikuchi, Kunitomo
    Miwa, Masafumi
    Tsuchitani, Shigeki
    POLYMER-BASED SMART MATERIALS - PROCESSES, PROPERTIES AND APPLICATION, 2009, 1134 : 43 - 48