Control and local measurement of the spin chemical potential in a magnetic insulator

被引:212
作者
Du, Chunhui [1 ]
van der Sar, Toeno [1 ]
Zhou, Tony X. [1 ,2 ]
Upadhyaya, Pramey [3 ]
Casola, Francesco [1 ,4 ]
Zhang, Huiliang [1 ,4 ]
Onbasli, Mehmet C. [5 ,6 ]
Ross, Caroline A. [5 ]
Walsworth, Ronald L. [1 ,4 ]
Tserkovnyak, Yaroslav [3 ]
Yacoby, Amir [1 ,2 ]
机构
[1] Harvard Univ, Dept Phys, 17 Oxford St, Cambridge, MA 02138 USA
[2] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[3] Univ Calif Los Angeles, Dept Phys & Astron, 475 Portola Plaza, Los Angeles, CA 90095 USA
[4] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA
[5] MIT, Dept Mat Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[6] Koc Univ, Dept Elect & Elect Engn, TR-34450 Istanbul, Turkey
基金
瑞士国家科学基金会;
关键词
ROOM-TEMPERATURE; TRANSPORT; NANOSTRUCTURES; ACCUMULATION; SPINTRONICS; DIAMOND; TORQUE;
D O I
10.1126/science.aak9611
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The spin chemical potential characterizes the tendency of spins to diffuse. Probing this quantity could provide insight into materials such as magnetic insulators and spin liquids and aid optimization of spintronic devices. Here we introduce single-spin magnetometry as a generic platform for nonperturbative, nanoscale characterization of spin chemical potentials. We experimentally realize this platform using diamond nitrogen-vacancy centers and use it to investigate magnons in a magnetic insulator, finding that the magnon chemical potential can be controlled by driving the system's ferromagnetic resonance. We introduce a symmetry-based two-fluid theory describing the underlying magnon processes, measure the local thermomagnonic torque, and illustrate the detection sensitivity using electrically controlled spin injection. Our results pave the way for nanoscale control and imaging of spin transport in mesoscopic systems.
引用
收藏
页码:195 / 198
页数:4
相关论文
共 31 条
  • [1] Temperature Dependence of the Nitrogen-Vacancy Magnetic Resonance in Diamond
    Acosta, V. M.
    Bauch, E.
    Ledbetter, M. P.
    Waxman, A.
    Bouchard, L-S.
    Budker, D.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (07)
  • [2] [Anonymous], 2011, QUANTUM PHASE TRANSI
  • [3] Spin-diffusion lengths in metals and alloys, and spin-flipping at metal/metal interfaces: an experimentalist's critical review
    Bass, Jack
    Pratt, William P., Jr.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (18)
  • [4] Bauer GEW, 2012, NAT MATER, V11, P391, DOI [10.1038/NMAT3301, 10.1038/nmat3301]
  • [5] Thermally driven spin torques in layered magnetic insulators
    Bender, Scott A.
    Tserkovnyak, Yaroslav
    [J]. PHYSICAL REVIEW B, 2016, 93 (06)
  • [6] Electronic Pumping of Quasiequilibrium Bose-Einstein-Condensed Magnons
    Bender, Scott A.
    Duine, Rembert A.
    Tserkovnyak, Yaroslav
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (24)
  • [7] Free-Standing Mechanical and Photonic Nanostructures in Single-Crystal Diamond
    Burek, Michael J.
    de Leon, Nathalie P.
    Shields, Brendan J.
    Hausmann, Birgit J. M.
    Chu, Yiwen
    Quan, Qimin
    Zibrov, Alexander S.
    Park, Hongkun
    Lukin, Mikhail D.
    Loncar, Marko
    [J]. NANO LETTERS, 2012, 12 (12) : 6084 - 6089
  • [8] Chumak AV, 2015, NAT PHYS, V11, P453, DOI [10.1038/nphys3347, 10.1038/NPHYS3347]
  • [9] Generation of coherent spin-wave modes in yttrium iron garnet microdiscs by spin-orbit torque
    Collet, M.
    de Milly, X.
    Kelly, O. d'Allivy
    Naletov, V. V.
    Bernard, R.
    Bortolotti, P.
    Ben Youssef, J.
    Demidov, V. E.
    Demokritov, S. O.
    Prieto, J. L.
    Munoz, M.
    Cros, V.
    Anane, A.
    de Loubens, G.
    Klein, O.
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [10] Magnon spin transport driven by the magnon chemical potential in a magnetic insulator
    Cornelissen, L. J.
    Peters, K. J. H.
    Bauer, G. E. W.
    Duine, R. A.
    van Wees, B. J.
    [J]. PHYSICAL REVIEW B, 2016, 94 (01)