Understanding the effect of particle surface free energy on the structural and mechanical properties of clay-laden rigid polyurethane foams

被引:29
作者
Van Hooghten, Rob [1 ]
Gyssels, Sarah [1 ]
Estravis, Sergio [2 ]
Angel Rodriguez-Perez, Miguel [2 ]
Moldenaers, Paula [1 ]
机构
[1] Univ Louvain, Katholieke Univ Leuven, Dept Chem Engn, B-3001 Heverlee, Belgium
[2] Dept Condensed Matter Phys, Cellular Mat Lab CellMat, Valladolid, Spain
关键词
Polyurethane; Foam; Nanoclay; Surface free energy; Shear modulus; NANOCOMPOSITE FOAMS; MELT RHEOLOGY; CONTACT-ANGLE; DISPERSION; NANOCLAY; EXFOLIATION; VISCOELASTICITY; NANOPARTICLES; PERCOLATION; COMPARE;
D O I
10.1016/j.eurpolymj.2014.08.029
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The surface free energy of nanoclays is shown to be a key parameter in controlling the localization of the particles in the polyurethane matrix, and the structural and mechanical properties of nanoclay laden rigid polyurethane foams. The surface free energy determines the dispersion quality of the nanoclays before foaming, which in turn determines the available surface area for heterogeneous nucleation during foaming. It has been found that particles showing the best dispersion quality do not necessarily lead to the best mechanical properties of the foams. On the contrary, the nanoclays which are likely to get trapped at the polyurethane-air interface during foaming, yield improved mechanical properties as compared to the neat polyurethane foam, despite their less favorable dispersion. The interfacial adsorption stabilizes the cell wall during cell growth, leading to smaller cells after rigidification, as compared to the nonadsorbing nanoclays. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:135 / 144
页数:10
相关论文
共 58 条
[31]   In situ evidence of the nanoparticle nucleating effect in polyurethane-nanoclay foamed systems [J].
Pardo-Alonso, S. ;
Solorzano, E. ;
Estravis, S. ;
Rodriguez-Perez, M. A. ;
de Saja, J. A. .
SOFT MATTER, 2012, 8 (44) :11262-11270
[32]   Formation and characterization of polyurethane-vermiculite clay nanocomposite foams [J].
Patro, T. Umasankar ;
Harikrishnan, G. ;
Misra, Ashok ;
Khakhar, Devang V. .
POLYMER ENGINEERING AND SCIENCE, 2008, 48 (09) :1778-1784
[33]   Contact angle measurements as a tool to investigate the filler-matrix interactions in polyurethane-clay nanocomposites from blocked prepolymer [J].
Pegoretti, Alessandro ;
Dorigato, Andrea ;
Brugnara, Marco ;
Penati, Amabile .
EUROPEAN POLYMER JOURNAL, 2008, 44 (06) :1662-1672
[34]   Universal features of the fluid to solid transition for attractive colloidal particles [J].
Prasad, V ;
Trappe, V ;
Dinsmore, AD ;
Segre, PN ;
Cipelletti, L ;
Weitz, DA .
FARADAY DISCUSSIONS, 2003, 123 :1-12
[35]   Flow Dichroism as a Reliable Method to Measure the Hydrodynamic Aspect Ratio of Gold Nanoparticles [J].
Reddy, Naveen Krishna ;
Perez-Juste, Jorge ;
Pastoriza-Santos, Isabel ;
Lang, Peter R. ;
Dhont, Jan K. G. ;
Liz-Marzan, Luis M. ;
Vermant, Jan .
ACS NANO, 2011, 5 (06) :4935-4944
[36]   Linear viscoelasticity of disordered polystyrene-polyisoprene block copolymer based layered-silicate nanocomposites [J].
Ren, JX ;
Silva, AS ;
Krishnamoorti, R .
MACROMOLECULES, 2000, 33 (10) :3739-3746
[37]   Effect of the nanoclay types on the rheological response of unsaturated polyesterclay nanocomposites [J].
Rezadoust, Amir Masoud ;
Esfandeh, Masoud ;
Beheshty, Mohammad Hosain ;
Heinrich, Gert .
POLYMER ENGINEERING AND SCIENCE, 2013, 53 (04) :809-817
[38]   Analysis for determining surface free energy uncertainty by the Owen-Wendt method [J].
Rudawska, Anna ;
Jacniacka, Elzbieta .
INTERNATIONAL JOURNAL OF ADHESION AND ADHESIVES, 2009, 29 (04) :451-457
[39]   Viscoelastic properties of colloidal gels [J].
Rueb, CJ ;
Zukoski, CF .
JOURNAL OF RHEOLOGY, 1997, 41 (02) :197-218
[40]   Rheology of polypropylene/clay hybrid materials [J].
Solomon, MJ ;
Almusallam, AS ;
Seefeldt, KF ;
Somwangthanaroj, A ;
Varadan, P .
MACROMOLECULES, 2001, 34 (06) :1864-1872