A CHEBYSHEV SPECTRAL COLLOCATION METHOD FOR THE COUPLED NONLINEAR SCHRODINGER EQUATIONS

被引:0
|
作者
Rashid, Abdur [1 ]
Ismail, Ahmad Izani Bin Md. [1 ]
机构
[1] Univ Sains Malaysia, Sch Math Sci, George Town, Malaysia
关键词
Coupled Nonlinear Schrodinger Equations; Chebyshev Spectral Collocation Method; FINITE-DIFFERENCE METHOD; STABILITY; CONVERGENCE; SOLITONS; SCHEME;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we use the Chebyshev spectral collocation method to obtain numerical solutions for the coupled nonlinear Schrodinger equations. The Schrodinger equations are reduced to a system of ordinary differential equations that are solved by the fourth order Runge-Kutta method. The comparison between the numerical solution and the exact solution for the test cases shows good accuracy of the Chebyshev spectral collocation method.
引用
收藏
页码:104 / 115
页数:12
相关论文
共 50 条
  • [31] The coupled nonlinear Schrodinger-type equations
    Abdelrahman, Mahmoud A. E.
    Hassan, S. Z.
    Inc, Mustafa
    MODERN PHYSICS LETTERS B, 2020, 34 (06):
  • [32] A split-step Fourier pseudo-spectral method for solving the space fractional coupled nonlinear Schrodinger equations
    Abdolabadi, F.
    Zakeri, A.
    Amiraslani, A.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 120
  • [33] Chebyshev Spectral Collocation Method for Computing Numerical Solution of Telegraph Equation
    Javidi, M.
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2013, 1 (01): : 16 - 29
  • [34] Discontinuous Galerkin and Multiscale Variational Schemes for a Coupled Damped Nonlinear System of Schrodinger Equations
    Asadzadeh, M.
    Rostamy, D.
    Zabihi, F.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (06) : 1912 - 1945
  • [35] A MULTISTEP LEGENDRE-GAUSS SPECTRAL COLLOCATION METHOD FOR NONLINEAR VOLTERRA INTEGRAL EQUATIONS
    Sheng, Chang-Tao
    Wang, Zhong-Qing
    Guo, Ben-Yu
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (04) : 1953 - 1980
  • [36] Solving coupled nonlinear Schrodinger equations via a direct discontinuous Galerkin method
    Zhang Rong-Pei
    Yu Xi-Jun
    Feng Tao
    CHINESE PHYSICS B, 2012, 21 (03)
  • [37] Chebyshev collocation method for static intrinsic equations of geometrically exact beams
    Masjedi, P. Khaneh
    Ovesy, H. R.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2015, 54 : 183 - 191
  • [38] Modified Chebyshev collocation method for pantograph-type differential equations
    Yang, Changqing
    APPLIED NUMERICAL MATHEMATICS, 2018, 134 : 132 - 144
  • [39] Numerical analysis of cubic orthogonal spline collocation methods for the coupled Schrodinger-Boussinesq equations
    Liao, Feng
    Zhang, Luming
    Wang, Shanshan
    APPLIED NUMERICAL MATHEMATICS, 2017, 119 : 194 - 212
  • [40] A Multilevel Stochastic Collocation Method for Schrodinger Equations with a Random Potential
    Jahnke, Tobias
    Stein, Benny
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2022, 10 (04) : 1753 - 1780