Seasonal Variations of Rosmarinic Acid and Its Glucoside and Expression of Genes Related to Their Biosynthesis in Two Medicinal and Aromatic Species of Salvia subg. Perovskia

被引:9
|
作者
Stafiniak, Marta [1 ]
Slusarczyk, Sylwester [1 ]
Pencakowski, Bartosz [1 ]
Matkowski, Adam [1 ]
Rahimmalek, Mehdi [2 ,3 ]
Bielecka, Monika [1 ]
机构
[1] Wroclaw Med Univ, Dept Pharmaceut Biol & Biotechnol, Borowska 211, PL-50556 Wroclaw, Poland
[2] Isfahan Univ Technol, Dept Hort, Coll Agr, Esfahan 841583111, Iran
[3] Wroclaw Med Univ, Bot Garden Med Plants, Jana Kochanowskiego 14, PL-51601 Wroclaw, Poland
来源
BIOLOGY-BASEL | 2021年 / 10卷 / 06期
关键词
phenylpropanoids; phenolic compounds; rosmarinic acid; salviaflaside; salvianolic acid L; Russian sage; gene expression analysis; RAS1; RAS2; PHENOLIC-ACIDS; CHEMICAL-COMPOSITION; ESSENTIAL OIL; ANTIOXIDANT ACTIVITIES; FOLK-MEDICINE; MILTIORRHIZA; PLANTS; ATRIPLICIFOLIA; ABROTANOIDES; ACCUMULATION;
D O I
10.3390/biology10060458
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Simple Summary Here, we studied two closely related medicinal and aromatic plants from Asia, called Russian sage or from their previously used Latin name-Perovskia. These plants contain various specialized metabolites called phenylpropanoids that contribute to their medicinal uses. In our experiments, several different specialized phytochemicals were traced down in the roots and leaves with the major metabolite called rosmarinic acid, known for health beneficial properties. In order to check if the composition of these plants is regulated by specific genes encoding proteins that assemble these phytochemicals, we analyzed their expression during the growth season (spring, summer and fall). Despite being the closest kin, the two species of Russian sage displayed different seasonal changes in the composition of bioactive metabolites and the activity of genes responsible for their production. The genes' activity was correlated with rosmarinic acid content in the roots but not in the green parts of the plants. Two genes pointed out were linked to the regulation of rosmarinic acid biosynthesis, called RAS (for Rosmarinic Acid-Synthase) and a newly reported version of an oxidizing enzyme called Cyp98A14. These discoveries broaden our understanding of relationships between the genes' activity and production of bioactive constituents in herbs such as the two studied species of Russian sages. Salvia abrotanoides Kar. and Salvia yangii B.T. Drew are medicinal and aromatic plants belonging to the subgenus Perovskia and used as herbal medicines in Asia. Derivatives of caffeic acid, mainly rosmarinic acid (RA), are the major phenolic compounds identified in these plants. Understanding the factors and molecular mechanisms regulating the accumulation of pharmacologically and ecologically relevant phenolic metabolites is essential for future biotechnological and medical applications. Up to date, no studies of phenylpropanoid biosynthetic pathway at the transcriptional level has been performed in the Perovskia subgenus. Using a combined qRT-PCR transcriptional activity analysis with LC-MS based metabolic profiling of roots and leaves at the beginning, in the middle and at the end of vegetation season, we have identified the following gene candidates with properties correlating to phenolic acid biosynthesis in S. abrotanoides and S. yangii: PAL, C4H, 4CL, TAT, HPPR, RAS1, RAS2 and Cyp98A14. A comparison of phenolic acid profiles with gene transcript levels revealed the transcriptional regulation of RA biosynthesis in the roots but not the leaves of the studied species. Additionally, RAS1 and Cyp98A14 were identified as rate-limiting steps regulating phenylpropanoid biosynthesis on a transcription level. In the future, this will facilitate the gene-based metabolic enhancement of phenolic compounds production in these promising medicinal herbs.
引用
收藏
页数:19
相关论文
共 5 条
  • [1] Variation of phenolic compounds and expression of phenylpropanoid biosynthetic genes in two medicinal and aromatic species of Salvia subg. Perovskia
    Stafiniak, M.
    Kozlowska, W.
    Pencakowski, B.
    Buluk, M.
    Slusarczyk, S.
    Matkowski, A.
    Rahimmalek, M.
    Bielecka, M.
    PLANTA MEDICA, 2019, 85 (18) : 1452 - 1452
  • [2] The Influence of Methyl Jasmonate on Expression Patterns of Rosmarinic Acid Biosynthesis Genes, and Phenolic Compounds in Different Species of Salvia subg. Perovskia Kar L.
    Kianersi, Farzad
    Amin Azarm, Davood
    Fatemi, Farzaneh
    Jamshidi, Bita
    Pour-Aboughadareh, Alireza
    Janda, Tibor
    GENES, 2023, 14 (04)
  • [3] Metabolomics and DNA-Based Authentication of Two Traditional Asian Medicinal and Aromatic Species of Salvia subg. Perovskia
    Bielecka, Monika
    Pencakowski, Bartosz
    Stafiniak, Marta
    Jakubowski, Klemens
    Rahimmalek, Mehdi
    Gharibi, Shima
    Matkowski, Adam
    Slusarczyk, Sylwester
    CELLS, 2021, 10 (01) : 1 - 25
  • [4] Comparative transcriptomics of two Salvia subg. Perovskia species contribute towards molecular background of abietane-type diterpenoid biosynthesis
    Bielecka, Monika
    Stafiniak, Marta
    Pencakowski, Bartosz
    Slusarczyk, Sylwester
    Jastrzebski, Jan Pawel
    Paukszto, Lukasz
    Laczmanski, Lukasz
    Gharibi, Shima
    Matkowski, Adam
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [5] Expression profiles of rosmarinic acid biosynthesis genes in two Salvia miltiorrhiza lines with differing water-soluble phenolic contents
    Song, Zhenqiao
    Li, Xingfeng
    INDUSTRIAL CROPS AND PRODUCTS, 2015, 71 : 24 - 30