Optimality and duality in nonsmooth multiobjective optimization involving generalized type I functions

被引:16
作者
Kuk, H [1 ]
Tanino, T
机构
[1] Kyung Hee Univ, Dept Math, Sch Elect & Informat, Yongin 449701, South Korea
[2] Osaka Univ, Grad Sch Engn, Dept Elect & Informat Syst, Suita, Osaka 5650871, Japan
关键词
nonsmooth multiobjective optimization; type I functions; optimality; duality;
D O I
10.1016/S0898-1221(03)00133-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A nonsmooth multiobjective optimization problem involving generalized Type I vector-valued functions is considered. Karush-Kuhn-Tucker type necessary and sufficient optimality conditions are obtained for a feasible point to be an efficient or properly efficient solution. Duality theorems are proved for Wolfe type and Mond-Weir type duals under the generalized Type I assumptions. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1497 / 1506
页数:10
相关论文
共 17 条
[1]   Generalized invexity and duality in multiobjective programming problems [J].
Aghezzaf, B ;
Hachimi, M .
JOURNAL OF GLOBAL OPTIMIZATION, 2000, 18 (01) :91-101
[2]  
Clarke F. H., 1983, OPTIMIZATION NONSMOO
[4]   PROPER EFFICIENCY AND THEORY OF VECTOR MAXIMIZATION [J].
GEOFFRION, AM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1968, 22 (03) :618-+
[5]  
Giorgi G, 1998, NONCON OPTIM ITS APP, V27, P389
[6]   NECESSARY AND SUFFICIENT CONDITIONS IN CONSTRAINED OPTIMIZATION [J].
HANSON, MA ;
MOND, B .
MATHEMATICAL PROGRAMMING, 1987, 37 (01) :51-58
[7]   ON SUFFICIENCY OF THE KUHN-TUCKER CONDITIONS [J].
HANSON, MA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1981, 80 (02) :545-550
[8]   OPTIMALITY CRITERIA AND DUALITY IN MULTIPLE-OBJECTIVE OPTIMIZATION INVOLVING GENERALIZED INVEXITY [J].
KAUL, RN ;
SUNEJA, SK ;
SRIVASTAVA, MK .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1994, 80 (03) :465-482
[9]  
Miettinen K.-M., 1999, NONLINEAR MULTIOBJEC
[10]  
Mond B., 1981, Generalized Concavity in Optimization and Economics, P263, DOI DOI 10.1016/J.EJOR.2006.08.045