B-spline method for solving Bratu's problem

被引:99
作者
Caglar, Hikmet [2 ]
Caglar, Nazan [1 ]
Ozer, Mehmet [3 ]
Valaristos, Antonios [4 ]
Anagnostopoulos, Antonios N. [5 ]
机构
[1] Istanbul Kultur Univ, Dept Business Adm, TR-34156 Istanbul, Turkey
[2] Istanbul Kultur Univ, Dept Math Comp, TR-34156 Istanbul, Turkey
[3] Istanbul Kultur Univ, Dept Phys, TR-34156 Istanbul, Turkey
[4] Aristotle Univ Thessaloniki, Dept Informat, GR-54124 Thessaloniki, Greece
[5] Aristotle Univ Thessaloniki, Dept Phys, GR-54124 Thessaloniki, Greece
关键词
Bratu's problem; B-spline method; nonlinear boundary value problem; Laplace method; decomposition method;
D O I
10.1080/00207160802545882
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a B-spline method for solving the one-dimensional Bratu's problem. The numerical approximations to the exact solution are computed and then compared with other existing methods. The effectiveness and accuracy of the B-spline method is verified for different values of the parameter, below its critical value, where two solutions occur.
引用
收藏
页码:1885 / 1891
页数:7
相关论文
共 20 条
[1]  
[Anonymous], 1978, A Practical Guide to Splines
[2]  
[Anonymous], 1987, Unconstrained Optimization: Practical Methods of Optimization
[3]  
Aregbesola Y A. S., 2003, Electronic Journal of Southern African Mathematical Sciences, V3, P1
[4]  
Boyd J. P., 1986, Journal of Scientific Computing, V1, P183, DOI 10.1007/BF01061392
[5]   Chebyshev polynomial expansions for simultaneous approximation of two branches of a function with application to the one-dimensional Bratu equation [J].
Boyd, JP .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 143 (2-3) :189-200
[6]   Application of a Mickens finite-difference scheme to the cylindrical Bratu-Gelfand problem [J].
Buckmire, R .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2004, 20 (03) :327-337
[7]   Investigations of nonstandard, Mickens-type, finite-difference schemes for singular boundary value problems in cylindrical or spherical coordinates [J].
Buckmire, R .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2003, 19 (03) :380-398
[8]   B-spline solution of non-linear singular boundary value problems arising in physiology [J].
Caglar, Hikmet ;
Caglar, Nazan ;
Oezer, Mehmet .
CHAOS SOLITONS & FRACTALS, 2009, 39 (03) :1232-1237
[9]   An algorithm for solving boundary value problems [J].
Deeba, E ;
Khuri, SA ;
Xie, SS .
JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 159 (02) :125-138
[10]  
Frank-Kamenetskii D.A, 1955, DIFFUSION HEAT EXCHA