The effect of alkaline and silane treatments on mechanical properties and breakage of sisal fibers and poly(lactic acid)/sisal fiber composites

被引:162
作者
Orue, A. [1 ]
Jauregi, A. [1 ]
Unsuain, U. [1 ]
Labidi, J. [1 ]
Eceiza, A. [1 ]
Arbelaiz, A. [1 ]
机构
[1] Univ Basque Country UPV EHU, Polytech Coll San Sebastian, Chem & Environm Engn Dept, Mat Technol Grp, Pza Europa 1, Donostia San Sebastian 20018, Spain
关键词
Polymer-matrix composites (PMCs); Biocomposite; Mechanical properties; Surface treatments; INTERFACIAL SHEAR-STRENGTH; SURFACE MODIFICATIONS; THERMAL-PROPERTIES; CELLULOSE FIBERS; COUPLING AGENTS; NATURAL FIBERS; TENSILE; BEHAVIOR; DENSITY; KENAF;
D O I
10.1016/j.compositesa.2016.01.021
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The main goals of this work were to study the effect of different chemical treatments on sisal fiber bundles tensile properties as well as on tensile properties of composites based on poly(lactic acid) (PLA) matrix and sisal fibers. For this purpose, sisal fibers were treated with different chemical treatments. After treating sisal fibers the tensile strength values decreased respect to untreated fiber ones, especially when the combination of NaOH + silane treatment was used. Taking into account fiber tensile properties and fiber/PLA adhesion values, composites based on silane treated fibers would show the highest tensile strength value. However, composites based on alkali treated and NaOH + silane treated fibers showed the highest tensile strength values. Finally, experimental tensile strength values of composites were compared with those values obtained using micromechanical models. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:186 / 195
页数:10
相关论文
共 50 条
[11]   Tensile behavior of New Zealand flax (Phormium tenax) fibers [J].
De Rosa, Igor Maria ;
Kenny, Jose Maria ;
Puglia, Debora ;
Santulli, Carlo ;
Sarasini, Fabrizio .
JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2010, 29 (23) :3450-3454
[12]   The effect of fiber surface treatments on the tensile and water sorption properties of polypropylene-luffa fiber composites [J].
Demir, H ;
Atikler, U ;
Balköse, D ;
Tihminlioglu, F .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2006, 37 (03) :447-456
[13]   Critical review of recent publications on use of natural composites in infrastructure [J].
Dittenber, David B. ;
GangaRao, Hota V. S. .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2012, 43 (08) :1419-1429
[14]   Predicting the tensile strength of natural fibre reinforced thermoplastics [J].
Facca, Angelo G. ;
Kortschot, Mark T. ;
Yan, Ning .
COMPOSITES SCIENCE AND TECHNOLOGY, 2007, 67 (11-12) :2454-2466
[15]   Predicting the elastic modulus of natural fibre reinforced thermoplastics [J].
Facca, Angelo G. ;
Kortschot, Mark T. ;
Yan, Ning .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2006, 37 (10) :1660-1671
[16]   Hybrid cork-polymer composites containing sisal fibre: Morphology, effect of the fibre treatment on the mechanical properties and tensile failure prediction [J].
Fernandes, Emanuel M. ;
Mano, Joao F. ;
Reis, Rui L. .
COMPOSITE STRUCTURES, 2013, 105 :153-162
[17]   Effect of fiber surface-treatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf fibers [J].
Huda, Masud S. ;
Drzal, Lawrence T. ;
Mohanty, Amar K. ;
Misra, Manjusri .
COMPOSITES SCIENCE AND TECHNOLOGY, 2008, 68 (02) :424-432
[18]  
Karmaker AC, 1996, J APPL POLYM SCI, V62, P1147, DOI 10.1002/(SICI)1097-4628(19961121)62:8<1147::AID-APP2>3.0.CO
[19]  
2-I
[20]  
Klemm D, 1998, COMPREHENSIVE CELLUL, V1, P84