Estimates for character sums with various convolutions

被引:8
作者
Hanson, Brandon [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
arithmetic combinatorics; sumsets; Sum-Product phenomenon; FINITE-FIELDS; ADDITIVE DECOMPOSITIONS; QUADRATIC RESIDUES;
D O I
10.4064/aa8404-5-2017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:133 / 146
页数:14
相关论文
共 15 条
[1]  
Balog A., 2015, ARXIV151003309
[2]   MULTILINEAR EXPONENTIAL SUMS IN PRIME FIELDS UNDER OPTIMAL ENTROPY CONDITION ON THE SOURCES [J].
Bourgain, Jean .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2009, 18 (05) :1477-1502
[3]   On a variant of sum-product estimates and explicit exponential sum bounds in prime fields [J].
Bourgain, L. ;
Garaev, M. Z. .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2009, 146 :1-21
[4]  
Burgess D. A., 1963, Proc. Lond. Math. Soc, V3, P524
[5]  
Burgess DA., 1962, P LOND MATH SOC, V3, P193, DOI DOI 10.1112/PLMS/S3-12.1.193
[6]   ON A QUESTION OF DAVENPORT AND LEWIS AND NEW CHARACTER SUM BOUNDS IN FINITE FIELDS [J].
Chang, Mei-Chu .
DUKE MATHEMATICAL JOURNAL, 2008, 145 (03) :409-442
[7]   ESTIMATES FOR CHARACTER SUMS [J].
FRIEDLANDER, J ;
IWANIEC, H .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 119 (02) :365-372
[8]  
Iwaniec H., 2004, AMS C PUBLICATIONS, V53
[9]   New sum-product type estimates over finite fields [J].
Roche-Newton, Oliver ;
Rudnev, Misha ;
Shkredov, Ilya D. .
ADVANCES IN MATHEMATICS, 2016, 293 :589-605
[10]   An Improved Sum-Product Inequality in Fields of Prime Order [J].
Rudnev, Misha .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2012, 2012 (16) :3693-3705