Techno-Economic Assessment of Pyrolysis Char Production and Application - A Review

被引:10
|
作者
Kuppens, Tom [1 ]
Van Dael, Miet [1 ,2 ]
Vanreppelen, Kenny [3 ]
Carleer, Robert [3 ]
Yperman, Jan [3 ]
Schreurs, Sonja [4 ]
Van Passel, Steven [1 ]
机构
[1] Hasselt Univ, Ctr Environm Sci, Res Grp Environm Econ, Agoralaan Bldg D, B-3590 Diepenbeek, Belgium
[2] VITO, B-2400 Mol, Belgium
[3] Hasselt Univ, Ctr Environm Sci, Res Grp Analyt & Appl Chem, B-3590 Diepenbeek, Belgium
[4] Hasselt Univ, Ctr Environm Sci, Res Grp Nucl Technol, D-3590 Diepenbeek, Belgium
关键词
CO-PYROLYSIS; FORMALDEHYDE RESIN; ACTIVATED CARBON; PARTICLE BOARD; BIOCHAR; SLUDGE;
D O I
10.3303/CET1437012
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Many organic residue streams such as pig manure are not or inefficiently used, although they can be converted into valuable materials, as well as energy, using pyrolysis. The yield of the pyrolysis products (i.e. oil, gas and char) is dependent on the process conditions and the feedstock used. Char as a soil amendment or activated carbon are interesting options for valorization of biomass residues. Here, a review is presented of the techno-economic potential of both valorization options based on literature and own experiments with wood from phytoremediation, particle board and waste from beer production. The term "biochar" is specifically used to designate pyrolysis char that is intentionally applied to soil in order to enhance its structure and fertility. Biochar applications are often also motivated by the objective of climate change mitigation. Two main disadvantages for the economic feasibility of biochar applications have been discerned. Firstly, carbon sequestration in agricultural crops and soils is not yet eligible under the Clean Development Mechanism. Secondly, the impact of biochar on crop productivity is unclear. Activated carbon (AC) seems to have interesting adsorption characteristics resulting in potentially high sales prices. A preliminary techno-economic assessment showed that AC production is preferred above oil production for wood from phytoremediation as long as the market price of 2 kEUR.t(-1) for commercially available ACs can be attained. Whenever a feedstock with high nitrogen content is available (e.g. particle board with melamine urea formaldehyde resin), even higher market prices might be attained. This study shows that valorization of the pyrolysis char might be an answer to the slow adoption of pyrolysis in commercial applications. Focus in research and development, for instance in future research with regard to pig manure valorization, should therefore be on sustainable products with high economic value and direct utilization potential.
引用
收藏
页码:67 / +
页数:3
相关论文
共 50 条
  • [31] Techno-economic and environmental assessment of LNG export for hydrogen production
    Ghafri, Saif ZS. Al
    Revell, Caitlin
    Di Lorenzo, Mauricio
    Xiao, Gongkui
    Buckley, Craig E.
    May, Eric F.
    Johns, Michael
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (23) : 8343 - 8369
  • [32] Exergy assessment and techno-economic optimization of bioethanol production routes
    Ortiz, Pablo A. Silva
    Marechal, Francois
    Junior, Silvio de Oliveira
    FUEL, 2020, 279 (279)
  • [33] Techno-Economic Assessment of Benzene Production from Shale Gas
    Perez-Uresti, Salvador I.
    Adrian-Mendiola, Jorge M.
    El-Halwagi, Mahmoud M.
    Jimenez-Gutierrez, Arturo
    PROCESSES, 2017, 5 (03):
  • [34] Green ethylene production in the UK by 2035: a techno-economic assessment
    Nyhus, Andreas H.
    Yliruka, Maria
    Shah, Nilay
    Chachuat, Benoit
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (05) : 1931 - 1949
  • [35] Techno-economic Assessment of Hydrogen Production Using Solar Energy
    Ferreira M.
    Pereira R.M.M.
    Pereira A.J.C.
    Renewable Energy and Power Quality Journal, 2022, 20 : 751 - 756
  • [36] A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion
    Bridgwater, AV
    Toft, AJ
    Brammer, JG
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2002, 6 (03): : 181 - 248
  • [37] Mild catalytic pyrolysis of biomass for production of transportation fuels: a techno-economic analysis
    Thilakaratne, Rajeeva
    Brown, Tristan
    Li, Yihua
    Hu, Guiping
    Brown, Robert
    GREEN CHEMISTRY, 2014, 16 (02) : 627 - 636
  • [38] Techno-economic assessment of biomass slow pyrolysis into different biochar and methanol concepts
    Shabangu, Shaka
    Woolf, Dominic
    Fisher, Elizabeth M.
    Angenent, Largus T.
    Lehmann, Johannes
    FUEL, 2014, 117 : 742 - 748
  • [39] Techno-economic and greenhouse gas emission assessment of carbon negative pyrolysis technology
    Ganguly, Arna
    Brown, Robert C.
    Wright, Mark Mba
    GREEN CHEMISTRY, 2022, 24 (23) : 9290 - 9302
  • [40] Simulation and techno-economic assessment of bio-methanol production from pine biomass, biochar and pyrolysis oil
    Zhang, Zhihai
    Delcroix, Benoit
    Rezazgui, Olivier
    Mangin, Patrice
    Sustainable Energy Technologies and Assessments, 2021, 44