Mechanisms of Two-Electron and Four-Electron Electrochemical Oxygen Reduction Reactions at Nitrogen-Doped Reduced Graphene Oxide

被引:223
作者
Kim, Hyo Won [1 ,2 ,3 ]
Bukas, Vanessa J. [4 ,5 ,10 ]
Park, Hun [6 ]
Park, Sojung [7 ]
Diederichsen, Kyle M. [1 ,2 ]
Lim, Jinkyu [8 ]
Cho, Young Hoon [9 ]
Kim, Juyoung [3 ]
Kim, Wooyul [7 ]
Han, Tae Hee [6 ]
Voss, Johannes [4 ,5 ]
Luntz, Alan C. [4 ,5 ]
McCloskey, Bryan D. [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA
[3] Kangwon Natl Univ, Dept Adv Mat Engn, Samcheok 24341, South Korea
[4] Stanford Univ, Dept Chem Engn, SUNCAT Ctr Interface Sci & Catalysis, Stanford, CA 94305 USA
[5] SLAC Natl Accelerator Lab, SUNCAT Ctr Interface Sci & Catalysis, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA
[6] Hanyang Univ, Dept Organ & Nano Engn, Seoul 04763, South Korea
[7] Sookmyung Womens Univ, Dept Chem & Biol Engn, Seoul 04310, South Korea
[8] Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn, Daejeon 34141, South Korea
[9] Korea Res Inst Chem Technol, Membrane Res Ctr, Daejeon 34114, South Korea
[10] Tech Univ Denmark, Dept Phys, Catalysis Theory Ctr, DK-2800 Lyngby, Denmark
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
electrocatalysis; oxygen reduction reaction; mechanism; selectivity; pH; kinetic isotope; nitrogen-doped reduced graphene oxide; CATALYSTS; EVOLUTION; ORR; ELECTROCATALYSTS;
D O I
10.1021/acscatal.9b04106
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Doped carbon-based systems have been extensively studied over the past decade as active electrocatalysts for both the two-electron (2e(-)) and four-electron (4e(-)) oxygen reduction reactions (ORRs). However, the mechanisms for ORR are generally poorly understood. Here, we report an extensive experimental and first-principles theoretical study of the ORR at nitrogen-doped reduced graphene oxide (NrGO). We synthesize three distinct NrGO catalysts and investigate their chemical and structural properties in detail via X-ray photoelectron spectroscopy, infrared and Raman spectroscopies, high-resolution transmission electron microscopy, and thin-film electrical conductivity. ORR experiments include the pH dependences of 2e(-) versus 4e(-) ORR selectivity, ORR onset potentials, Tafel slopes, and H/D kinetic isotope effects. These experiments show very different ORR behavior for the three catalysts, in terms of both selectivity and the underlying mechanism, which proceeds either via coupled proton-electron transfers (CPETs) or non-CPETs. Reasonable structural models developed from density functional theory rationalize this behavior. The key determinant between CPET vs non-CPET mechanisms is the electron density at the Fermi level under operating ORR conditions. Regardless of the reaction mechanism or electrolyte pH, however, we identify the ORR active sites as sp(2) carbons that are located next to oxide regions. This assignment highlights the importance of oxygen functional groups, while details of (modest) N-doping may still affect the overall catalytic activity, and likely also the selectivity, by modifying the general chemical environment around the active site.
引用
收藏
页码:852 / +
页数:23
相关论文
共 39 条
  • [1] Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces
    Abild-Pedersen, F.
    Greeley, J.
    Studt, F.
    Rossmeisl, J.
    Munter, T. R.
    Moses, P. G.
    Skulason, E.
    Bligaard, T.
    Norskov, J. K.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (01)
  • [2] Acik M, 2010, NAT MATER, V9, P840, DOI [10.1038/nmat2858, 10.1038/NMAT2858]
  • [3] The Role of Oxygen during Thermal Reduction of Graphene Oxide Studied by Infrared Absorption Spectroscopy
    Acik, Muge
    Lee, Geunsik
    Mattevi, Cecilia
    Pirkle, Adam
    Wallace, Robert M.
    Chhowalla, Manish
    Cho, Kyeongjae
    Chabal, Yves
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (40) : 19761 - 19781
  • [4] On the electrocatalytic activity of nitrogen-doped reduced graphene Oxide: Does the nature of nitrogen really control the activity towards oxygen reduction?
    Bag, Sourav
    Raj, C. Retna
    [J]. JOURNAL OF CHEMICAL SCIENCES, 2016, 128 (03) : 339 - 347
  • [5] Nitrogen-doped graphene as catalysts and catalyst supports for oxygen reduction in both acidic and alkaline solutions
    Bai, Jincheng
    Zhu, Qianqian
    Lv, Zhexin
    Dong, Hongzhou
    Yu, Jianhua
    Dong, Lifeng
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (03) : 1413 - 1418
  • [6] Bard AJ, 1985, STANDARD POTENTIALS
  • [7] Combining Experiment and Theory To Unravel the Mechanism of Two-Electron Oxygen Reduction at a Selective and Active Co-catalyst
    Bukas, Vanessa J.
    Kim, Hyo Won
    Sengpiel, Robert
    Knudsen, Kristian
    Voss, Johannes
    McCloskey, Bryan D.
    Luntz, Alan C.
    [J]. ACS CATALYSIS, 2018, 8 (12): : 11940 - 11951
  • [8] Electrochemical Barriers Made Simple
    Chan, Karen
    Norskov, Jens K.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (14): : 2663 - 2668
  • [9] Carbon catalysts for electrochemical hydrogen peroxide production in acidic media
    Colic, Viktor
    Yang, Sungeun
    Revay, Zsolt
    Stephens, Ifan E. L.
    Chorkendorff, Ib
    [J]. ELECTROCHIMICA ACTA, 2018, 272 : 192 - 202
  • [10] Metal-Free Catalysts for Oxygen Reduction Reaction
    Dai, Liming
    Xue, Yuhua
    Qu, Liangti
    Choi, Hyun-Jung
    Baek, Jong-Beom
    [J]. CHEMICAL REVIEWS, 2015, 115 (11) : 4823 - 4892