Existence of three positive pseudo-symmetric solutions for a one dimensional p-Laplacian

被引:77
作者
Avery, R
Henderson, J [1 ]
机构
[1] Baylor Univ, Dept Math, Waco, TX 76798 USA
[2] Dakota State Univ, Coll Nat Sci, Madison, SD 57042 USA
关键词
D O I
10.1016/S0022-247X(02)00308-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We apply the Five Functionals Fixed Point Theorem to verify the existence of at least three positive pseudo-symmetric solutions for the three point boundary value problem, (g(u'))' + a(t) f (u) = 0, u(0) = 0, and u(v) = u(1), where g(v) = \v\(p-2)v, with p > 1 and v is an element of (0, 1). (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:395 / 404
页数:10
相关论文
共 10 条
[1]  
Agarwal R.P., 1999, POSITIVE SOLUTIONS D
[2]  
[Anonymous], 1998, MSR HOT LINE
[3]   Three symmetric positive solutions for a second-order boundary value problem [J].
Avery, RI ;
Henderson, J .
APPLIED MATHEMATICS LETTERS, 2000, 13 (03) :1-7
[4]  
AVERY RI, 1997, MULTIPLE POSITIVE SO
[5]  
Deimling K., 1985, NONLINEAR FUNCTIONAL, DOI DOI 10.1007/978-3-662-00547-7
[6]  
GAO D, 1988, NONLINEAR PROBLEMS A
[7]  
HE XM, IN PRESS ZAMM
[8]   Multiple symmetric positive solutions for a second order boundary value problem [J].
Henderson, J ;
Thompson, HB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (08) :2373-2379
[9]   MULTIPLE POSITIVE FIXED-POINTS OF NON-LINEAR OPERATORS ON ORDERED BANACH-SPACES [J].
LEGGETT, RW ;
WILLIAMS, LR .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1979, 28 (04) :673-688
[10]  
Zeidler E, 1993, NONLINEAR FUNCTIONAL