Approximation and application of the Riesz-Caputo fractional derivative of variable order with fixed memory

被引:14
作者
Blaszczyk, Tomasz [1 ]
Bekus, Krzysztof [1 ]
Szajek, Krzysztof [2 ]
Sumelka, Wojciech [2 ]
机构
[1] Czestochowa Tech Univ, Dept Math, Al Armii Krajowej 21, PL-42200 Czestochowa, Poland
[2] Poznan Univ Tech, Inst Struct Anal, Piotrowo 5 St, PL-60965 Poznan, Poland
关键词
Riesz-Caputo derivative; variable order; fractional continua; numerical solution; ANOMALOUS DIFFUSION; NUMERICAL-SOLUTION; NONLOCAL ELASTICITY; CONTINUUM-MECHANICS; HEAT-CONDUCTION; EQUATION; CALCULUS; MODEL; BEAM; STABILITY;
D O I
10.1007/s11012-021-01364-w
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper, the Riesz-Caputo fractional derivative of variable order with fixed memory is considered. The studied non-integer differential operator is approximated by means of modified basic rules of numerical integration. The three proposed methods are based on polynomial interpolation: piecewise constant, piecewise linear, and piecewise quadratic interpolation. The errors generated by the described methods and the experimental rate of convergence are reported. Finally, an application of the Riesz-Caputo fractional derivative of space-dependent order in continuum mechanics is depicted.
引用
收藏
页码:861 / 870
页数:10
相关论文
共 56 条
[1]   VARIATIONAL METHODS FOR THE SOLUTION OF FRACTIONAL DISCRETE/CONTINUOUS STURM-LIOUVILLE PROBLEMS [J].
Almeida, Ricardo ;
Malinowska, Agnieszka B. ;
Luisa Morgado, M. ;
Odzijewicz, Tatiana .
JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES, 2017, 12 (01) :3-21
[2]   Finite element method for a nonlocal Timoshenko beam model [J].
Alotta, Gioacchino ;
Failla, Giuseppe ;
Zingales, Massimiliano .
FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2014, 89 :77-92
[3]   Generalized wave equation in nonlocal elasticity [J].
Atanackovic, T. M. ;
Stankovic, B. .
ACTA MECHANICA, 2009, 208 (1-2) :1-10
[4]   HAMILTON'S PRINCIPLE WITH VARIABLE ORDER FRACTIONAL DERIVATIVES [J].
Atanackovic, Teodor M. ;
Pilipovic, Stevan .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2011, 14 (01) :94-109
[5]   Nonlocal vibration analysis of microstretch plates in the framework of space-fractional mechanics-theory and validation [J].
Aydinlik, Soner ;
Kiris, Ahmet ;
Sumelka, Wojciech .
EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (02)
[6]   A THEORETICAL BASIS FOR THE APPLICATION OF FRACTIONAL CALCULUS TO VISCOELASTICITY [J].
BAGLEY, RL ;
TORVIK, PJ .
JOURNAL OF RHEOLOGY, 1983, 27 (03) :201-210
[7]   An exact solution of fractional Euler-Bernoulli equation for a beam with fixed-supported and fixed-free ends [J].
Blaszczyk, Tomasz ;
Siedlecki, Jaroslaw ;
Sun, HongGuang .
APPLIED MATHEMATICS AND COMPUTATION, 2021, 396
[8]   On numerical approximation of the Riesz-Caputo operator with the fixed/short memory length [J].
Blaszczyk, Tomasz ;
Bekus, Krzysztof ;
Szajek, Krzysztof ;
Sumelka, Wojciech .
JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2021, 33 (01)
[10]   Numerical Solution of Euler-Lagrange Equation with Caputo Derivatives [J].
Blaszczyk, Tomasz ;
Ciesielski, Mariusz .
ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2017, 9 (01) :173-185