On a function projective synchronization scheme for non-identical Fractional-order chaotic (hyperchaotic) systems with different dimensions and orders

被引:29
|
作者
Ouannas, Adel [1 ]
Grassi, Giuseppe [2 ]
Ziar, Toufik [3 ]
Odibat, Zaid [4 ]
机构
[1] Univ Larbi Tebessi, Lab Math Informat & Syst LAMS, Tebessa 12002, Algeria
[2] Univ Salento, Dipartimento Ingn Innovaz, I-73100 Lecce, Italy
[3] Univ Tebessa, Dept Mat Sci, Tebessa 12002, Algeria
[4] Al Balqa Appl Univ, Dept Math, Fac Sci, Salt 19117, Jordan
来源
OPTIK | 2017年 / 136卷
关键词
Function projective synchronization; Non-identical fractional-order systems; Chaos and hyperchaos;
D O I
10.1016/j.ijleo.2017.02.068
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Referring to fractional-order systems, this paper investigates the inverse full state hybrid function projective synchronization (IFSHFPS) of non-identical systems characterized by different dimensions and different orders. By taking a master system of dimension n and a slave system of dimension m, the method enables each master system state to be synchronized with a linear combination of slave system states, where the scaling factor of the linear combination can be any arbitrary differentiable function. The approach presents some useful features: i) it enables commensurate and incommensurate non-identical fractional order systems with different dimension n < m or n >m to be synchronized; ii) it can be applied to a wide class of chaotic (hyperchaotic) fractional -order systems for any differentiable scaling function; iii) it is rigorous, being based on two theorems, one for the case n<m and the other for the case n>m. Two different numerical examples are reported, involving chaotic/hyperchaotic fractional -order Lorenz systems (three-dimensional and four-dimensional master/slave, respectively) and hyperchaotic/chaotic fractional -order Chen systems (four-dimensional and three-dimensional master/slave, respectively). The examples clearly highlight the capability of the conceived approach in effectively achieving synchronized dynamics for any differentiable scaling function. (C) 2017 Elsevier GmbH. All rights reserved.
引用
收藏
页码:513 / 523
页数:11
相关论文
共 50 条
  • [1] Projective synchronization of different fractional-order chaotic systems with non-identical orders
    Si, Gangquan
    Sun, Zhiyong
    Zhang, Yanbin
    Chen, Wenquan
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (04) : 1761 - 1771
  • [2] The Co-existence of Different Synchronization Types in Fractional-order Discrete-time Chaotic Systems with Non-identical Dimensions and Orders
    Bendoukha, Samir
    Ouannas, Adel
    Wang, Xiong
    Khennaoui, Amina-Aicha
    Viet-Thanh Pham
    Grassi, Giuseppe
    Van Van Huynh
    ENTROPY, 2018, 20 (09)
  • [3] Projective lag synchronization for fractional-order chaotic systems with different orders
    Liu, Heng
    Yin, Zhixiang
    ICIC Express Letters, 2014, 8 (11): : 3221 - 3227
  • [4] Lag projective synchronization in fractional-order chaotic (hyperchaotic) systems
    Chen, Liping
    Chai, Yi
    Wu, Ranchao
    PHYSICS LETTERS A, 2011, 375 (21) : 2099 - 2110
  • [5] Modified function projective lag synchronization in fractional-order chaotic (hyperchaotic) systems
    Luo Chao
    Wang Xingyuan
    JOURNAL OF VIBRATION AND CONTROL, 2014, 20 (10) : 1498 - 1511
  • [6] Modified Projective Synchronization of Fractional-order Chaotic Systems with Different Dimensions
    Xi ZHANG
    Ran-chao WU
    ActaMathematicaeApplicataeSinica, 2020, 36 (02) : 527 - 538
  • [7] Modified Projective Synchronization of Fractional-order Chaotic Systems with Different Dimensions
    Zhang, Xi
    Wu, Ran-chao
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2020, 36 (02): : 527 - 538
  • [8] Modified Projective Synchronization of Fractional-order Chaotic Systems with Different Dimensions
    Xi Zhang
    Ran-chao Wu
    Acta Mathematicae Applicatae Sinica, English Series, 2020, 36 : 527 - 538
  • [9] Function projective synchronization for fractional-order chaotic systems
    Zhou, Ping
    Zhu, Wei
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (02) : 811 - 816
  • [10] Function-based hybrid synchronization types and their coexistence in non-identical fractional-order chaotic systems
    Adel Ouannas
    Giuseppe Grassi
    Xiong Wang
    Toufik Ziar
    Viet-Thanh Pham
    Advances in Difference Equations, 2018