Bounds on the Castelnuovo-Mumford regularity of tensor products

被引:18
作者
Caviglia, Giulio [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
Castelnuovo-Mumford regularity; postulation number; filter-regular sequence;
D O I
10.1090/S0002-9939-07-08222-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we show how, given a complex of graded modules and knowing some partial Castelnuovo-Mumford regularities for all the modules in the complex and for all the positive homologies, it is possible to get a bound on the regularity of the zero homology. We use this to prove that if dim Tor(1)(R) (M, N) <= 1, then reg (M circle times N) = reg(M)+ reg(N), generalizing results of Chandler, Conca and Herzog, and Sidman. Finally we give a description of the regularity of a module in terms of the postulation numbers of filter regular hyperplane restrictions.
引用
收藏
页码:1949 / 1957
页数:9
相关论文
共 9 条