Prediction of LC-MS/MS Properties of Peptides from Sequence by Deep Learning

被引:45
作者
Guan, Shenheng [1 ,2 ,3 ]
Moran, Michael F. [2 ,3 ,4 ]
Ma, Bin [1 ]
机构
[1] Univ Waterloo, David R Cheriton Sch Comp Sci, Waterloo, ON N2L 3G1, Canada
[2] Hosp Sick Children, Program Cell Biol, 686 Bay St, Toronto, ON M5G 0A4, Canada
[3] Hosp Sick Children, SPARC BioCtr, 686 Bay St, Toronto, ON M5G 0A4, Canada
[4] Univ Toronto, Dept Mol Genet, 686 Bay St, Toronto, ON M5G 0A4, Canada
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
INDUCED DISSOCIATION SPECTRA; MASS-SPECTROMETRY; CHARGE STATES;
D O I
10.1074/mcp.TIR119.001412
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Deep learning models for prediction of three key LC-MS/MS properties from peptide sequences were developed. The LC-MS/MS properties or behaviors are indexed retention times (iRT), MS1 or survey scan charge state distributions, and sequence ion intensities of HCD spectra. A common core deep supervised learning architecture, bidirectional long-short term memory (LSTM) recurrent neural networks was used to construct the three prediction models. Two featurization schemes were proposed and demonstrated to allow for efficient encoding of modifications. The iRT and charge state distribution models were trained with on order of 105 data points each. An HCD sequence ion prediction model was trained with 2 x 106 experimental spectra. The iRT prediction model and HCD sequence ion prediction model provide improved accuracies over the start-of-the-art models available in literature. The MS1 charge state distribution prediction model offers excellent performance. The prediction models can be used to enhance peptide identification and quantification in data-dependent acquisition and data-independent acquisition (DIA) experiments as well as to assist MRM (multiple reaction monitoring) and PRM (parallel reaction monitoring) experiment design.
引用
收藏
页码:2099 / 2107
页数:9
相关论文
共 27 条
[1]  
Bai S., 2018, 180301271V2 ARXIV
[2]   Optimization of Experimental Parameters in Data-Independent Mass Spectrometry Significantly Increases Depth and Reproducibility of Results [J].
Bruderer, Roland ;
Bernhardt, Oliver M. ;
Gandhi, Tejas ;
Xuan, Yue ;
Sondermann, Julia ;
Schmidt, Manuela ;
Gomez-Varela, David ;
Reiter, Lukas .
MOLECULAR & CELLULAR PROTEOMICS, 2017, 16 (12) :2296-2309
[3]   Charge Prediction Machine: Tool for Inferring Precursor Charge States of Electron Transfer Dissociation Tandem Mass Spectra [J].
Carvalho, Paulo C. ;
Cociorva, Daniel ;
Wong, Catherine C. L. ;
Carvalho, Maria da Gloria da C. ;
Barbosa, Valmir C. ;
Yates, John R., III .
ANALYTICAL CHEMISTRY, 2009, 81 (05) :1996-2003
[4]  
Chollet F., 2018, Deep Learning with Python
[5]   Using iRT, a normalized retention time for more targeted measurement of peptides [J].
Escher, Claudia ;
Reiter, Lukas ;
MacLean, Brendan ;
Ossola, Reto ;
Herzog, Franz ;
Chilton, John ;
MacCoss, Michael J. ;
Rinner, Oliver .
PROTEOMICS, 2012, 12 (08) :1111-1121
[6]   Prosit: proteome-wide prediction of peptide tandem mass spectra by deep learning [J].
Gessulat, Siegfried ;
Schmidt, Tobias ;
Zolg, Daniel Paul ;
Samaras, Patroklos ;
Schnatbaum, Karsten ;
Zerweck, Johannes ;
Knaute, Tobias ;
Rechenberger, Julia ;
Delanghe, Bernard ;
Huhmer, Andreas ;
Reimer, Ulf ;
Ehrlich, Hans-Christian ;
Aiche, Stephan ;
Kuster, Bernhard ;
Wilhelm, Mathias .
NATURE METHODS, 2019, 16 (06) :509-+
[7]  
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1
[8]   ION TRAPS FOR FOURIER-TRANSFORM ION-CYCLOTRON RESONANCE MASS-SPECTROMETRY - PRINCIPLES AND DESIGN OF GEOMETRIC AND ELECTRIC CONFIGURATIONS [J].
GUAN, SH ;
MARSHALL, AG .
INTERNATIONAL JOURNAL OF MASS SPECTROMETRY, 1995, 146 :261-296
[9]   A Data Processing Pipeline for Mammalian Proteome Dynamics Studies Using Stable Isotope Metabolic Labeling [J].
Guan, Shenheng ;
Price, John C. ;
Prusiner, Stanley B. ;
Ghaemmaghami, Sina ;
Burlingame, Alma L. .
MOLECULAR & CELLULAR PROTEOMICS, 2011, 10 (12)
[10]   MS-GF plus makes progress towards a universal database search tool for proteomics [J].
Kim, Sangtae ;
Pevzner, Pavel A. .
NATURE COMMUNICATIONS, 2014, 5