Local scaling limits of Levy driven fractional random fields

被引:2
|
作者
Pilipauskaite, Vytaute [1 ]
Surgailis, Donatas [2 ]
机构
[1] Univ Luxembourg, Dept Math, 6 Ave Fonte, L-4364 Esch Sur Alzette, Luxembourg
[2] Vilnius Univ, Fac Math & Informat, Naugarduko 24, LT-03225 Vilnius, Lithuania
关键词
Fractional random field; local anisotropic scaling limit; rectangular increment; Levy random measure; scaling transition; multi self-similar random field; LINEAR RANDOM-FIELDS; STOCHASTIC-PROCESSES; AGGREGATION; TRANSITION; ROUGHNESS; THEOREMS;
D O I
10.3150/21-BEJ1439
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We obtain a complete description of local anisotropic scaling limits for a class of fractional random fields X on R-2 written as stochastic integral with respect to infinitely divisible random measure. The scaling procedure involves increments of X over points the distance between which in the horizontal and vertical directions shrinks as O(lambda) and O(lambda(gamma)) respectively as lambda down arrow 0, for some gamma > 0. We consider two types of increments of X: usual increment and rectangular increment, leading to the respective concepts of gamma-tangent and gamma-rectangent random fields. We prove that for above X both types of local scaling limits exist for any gamma > 0 and undergo a transition, being independent of gamma > gamma(0) and gamma < gamma(0), for some gamma(0) > 0; moreover, the 'unbalanced' scaling limits (gamma not equal gamma(0)) are (H-1, H-2)-multi self-similar with one of H-i, i = 1, 2, equal to 0 or 1. The paper extends Pilipauskaite and Surgailis (Stochastic Process. Appl. 127 (2017) 2751-2779) and Surgailis (Stochastic Process. Appl. 130 (2020) 7518-7546) on largescale anisotropic scaling of random fields on Z(2) and Benassi et al. (Bernoulli 10 (2004) 357-373) on 1-tangent limits of isotropic fractional Levy random fields.
引用
收藏
页码:2833 / 2861
页数:29
相关论文
共 29 条
  • [1] Anisotropic scaling limits of long-range dependent random fields
    Surgailis, Donatas
    LITHUANIAN MATHEMATICAL JOURNAL, 2019, 59 (04) : 595 - 615
  • [2] Fractional Levy Fields
    Cohen, Serge
    LEVY MATTERS II: RECENT PROGRESS IN THEORY AND APPLICATIONS: FRACTIONAL LEVY FIELDS, AND SCALE FUNCTIONS, 2012, 2061 : 1 - 95
  • [3] Anisotropic scaling limits of long-range dependent linear random fields on Z3
    Surgailis, Donatas
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 472 (01) : 328 - 351
  • [4] SCALING LIMITS OF OVERSHOOTING LEVY WALKS
    Magdziarz, Marcin
    Teuerle, Marek
    Zebrowski, Piotr
    ACTA PHYSICA POLONICA B, 2012, 43 (05): : 1111 - 1132
  • [5] Anisotropic scaling limits of long-range dependent random fields
    Donatas Surgailis
    Lithuanian Mathematical Journal, 2019, 59 : 595 - 615
  • [6] Multidimensional Levy walk and its scaling limits
    Teuerle, Marek
    Zebrowski, Piotr
    Magdziarz, Marcin
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (38)
  • [7] Scaling limits of nonlinear functions of random grain model, with application to Burgers' equation
    Surgailis, Donatas
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2024, 174
  • [8] SCALING LIMITS FOR A RANDOM BOXES MODEL
    Aurzada, F.
    Schwinn, S.
    ADVANCES IN APPLIED PROBABILITY, 2019, 51 (03) : 773 - 801
  • [9] AGGREGATION OF NETWORK TRAFFIC AND ANISOTROPIC SCALING OF RANDOM FIELDS
    Leipus, Remigijus
    Pilipauskaite, Vytaute
    Surgailis, Donatas
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2023, : 77 - 126
  • [10] SLE scaling limits for a Laplacian random growth model
    Higgs, Frankie
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2022, 58 (03): : 1712 - 1739