STABLE AND UNSTABLE MANIFOLDS FOR QUASILINEAR PARABOLIC PROBLEMS WITH FULLY NONLINEAR DYNAMICAL BOUNDARY CONDITIONS

被引:0
作者
Schnaubelt, Roland [1 ]
机构
[1] Karlsruhe Inst Technol, Dept Math, D-76128 Karlsruhe, Germany
关键词
INVARIANT-MANIFOLDS; FREDHOLM PROPERTIES; ANALYTIC SOLUTIONS; STEFAN PROBLEM; CAHN-HILLIARD; SYSTEMS; REGULARITY; STABILITY; EQUATIONS; SPACES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a wellposedness and regularity theory for a large class of quasilinear parabolic problems with fully nonlinear dynamical boundary conditions. Moreover, we construct and investigate stable and unstable local invariant manifolds near a given equilibrium. In a companion paper, we treat center, center stable and center unstable manifolds for such problems and investigate their stability properties. This theory applies e.g. to reaction diffusion systems with dynamical boundary conditions and to the two phase Stefan problem with surface tension.
引用
收藏
页码:541 / 592
页数:52
相关论文
共 42 条
[1]   DYNAMIC THEORY OF QUASILINEAR PARABOLIC-SYSTEMS .3. GLOBAL EXISTENCE [J].
AMANN, H .
MATHEMATISCHE ZEITSCHRIFT, 1989, 202 (02) :219-250
[2]  
Amann H., 1995, Linear and Quasilinear Parabolic Problems. Vol. I. Abstract Linear Theory,, V89
[3]  
Amann Herbert, 1990, Differential Integral Equations, V3, P13, DOI 10.57262/die/1371586185
[4]  
[Anonymous], 1995, Analytic semigroups and optimal regularity in parabolic problems
[5]   A general approach to stability in free boundary problems [J].
Brauner, CM ;
Hulshof, J ;
Lunardi, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 164 (01) :16-48
[6]   Convergence to steady states of solutions of the Cahn-Hilliard and Caginalp equations with dynamic boundary conditions [J].
Chill, Ralph ;
Fasangova, Eva ;
Pruess, Jan .
MATHEMATISCHE NACHRICHTEN, 2006, 279 (13-14) :1448-1462
[7]  
Denk R, 2003, MEM AM MATH SOC, V166, P1
[8]   Maximal Lp-regularity of parabolic problems with boundary dynamics of relaxation type [J].
Denk, Robert ;
Pruess, Jan ;
Zacher, Rico .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (11) :3149-3187
[9]   Optimal Lp-Lq-estimates for parabolic boundary value problems with inhomogeneous data [J].
Denk, Robert ;
Hieber, Matthias ;
Pruess, Jan .
MATHEMATISCHE ZEITSCHRIFT, 2007, 257 (01) :193-224
[10]   Optimal regularity and Fredholm properties of abstract parabolic operators in Lp spaces on the real line [J].
Di Giorgio, Davide ;
Lunardi, Alessandra ;
Schnaubelt, Roland .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2005, 91 :703-737