Borophane as a Benchmate of Graphene: A Potential 2D Material for Anode of Li and Na-Ion Batteries

被引:160
作者
Jena, Naresh K. [1 ]
Araujo, Rafael B. [1 ]
Shukla, Vivekanand [1 ]
Ahuja, Rajeev [1 ,2 ]
机构
[1] Uppsala Univ, Mat Theory Div, Dept Phys & Astron, Condensed Matter Theory Grp, Box 516, SE-75120 Uppsala, Sweden
[2] Royal Inst Technol KTH, Dept Mat & Engn, Appl Mat Phys, SE-10044 Stockholm, Sweden
基金
瑞典研究理事会;
关键词
borophene; borophane; Dirac material; Li-ion battery; Na-ion battery; Li/Na-diffusion; TOTAL-ENERGY CALCULATIONS; ELECTRONIC-PROPERTIES; LITHIUM; DIFFUSION; STORAGE; SILICON; PERFORMANCE; PHOSPHORENE; ULTRAFAST; 1ST-PRINCIPLES;
D O I
10.1021/acsami.7b01421
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Borophene, single atomic-layer sheet of boron (Science 2015, 350, 1513), is a rather new entrant into the burgeoning class of 2D materials. Borophene exhibits anisotropic metallic properties whereas its hydrogenated counterpart borophane is reported to be a gapless Dirac material lying on the same bench with the celebrated graphene. Interestingly, this transition of borophane also rendered stability to it considering the fact that borophene was synthesized under ultrahigh vacuum conditions on a metallic (Ag) substrate. On the basis of first-principles density functional theory computations, we have investigated the possibilities of borophane as a potential Li/Na-ion battery anode material. We obtained a binding energy of -2.58 (-1.08 eV) eV for Li (Na)-adatom on borophane and Bader charge analysis revealed that Li(Na) atom exists in Li+(Na+) state. Further, on binding with Li/Na, borophane exhibited metallic properties as evidenced by the electronic band structure. We found that diffusion pathways for Li/Na on the borophane surface are anisotropic with x direction being the favorable one with a barrier of 0.27 and 0.09 eV, respectively. While assessing the Li-ion anode performance, we estimated that the maximum Li content is Li0.445B2H2, which gives rises to a material with a maximum theoretical specific capacity of 504 mAh/g together with an average voltage of 0.43 V versus Li/Li+. Likewise, for Na-ion the maximum theoretical capacity and average voltage were estimated to be 504 mAh/g and 0.03 V versus Na/Na+, respectively. These findings unambiguously suggest that borophane can be a potential addition to the map of Li and Na-ion anode materials and can rival some of the recently reported 2D materials including graphene.
引用
收藏
页码:16148 / 16158
页数:11
相关论文
共 61 条
[1]   Oxidation of free-standing and supported borophene [J].
Alvarez-Quiceno, J. C. ;
Miwa, R. H. ;
Dalpian, G. M. ;
Fazzio, A. .
2D MATERIALS, 2017, 4 (02)
[2]   Graphene-like silicon nanoribbons on Ag(110): A possible formation of silicene [J].
Aufray, Bernard ;
Kara, Abdelkader ;
Vizzini, Sebastien ;
Oughaddou, Hamid ;
Leandri, Christel ;
Ealet, Benedicte ;
Le Lay, Guy .
APPLIED PHYSICS LETTERS, 2010, 96 (18)
[3]   Stability and Exfoliation of Germanane: A Germanium Graphane Analogue [J].
Bianco, Elisabeth ;
Butler, Sheneve ;
Jiang, Shishi ;
Restrepo, Oscar D. ;
Windl, Wolfgang ;
Goldberger, Joshua E. .
ACS NANO, 2013, 7 (05) :4414-4421
[4]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[5]  
Feng BJ, 2016, NAT CHEM, V8, P564, DOI [10.1038/NCHEM.2491, 10.1038/nchem.2491]
[6]   Carbon materials for the electrochemical storage of energy in capacitors [J].
Frackowiak, E ;
Béguin, F .
CARBON, 2001, 39 (06) :937-950
[7]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[8]   Van der Waals heterostructures [J].
Geim, A. K. ;
Grigorieva, I. V. .
NATURE, 2013, 499 (7459) :419-425
[9]   Semiempirical GGA-type density functional constructed with a long-range dispersion correction [J].
Grimme, Stefan .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2006, 27 (15) :1787-1799
[10]   Recent development in 2D materials beyond graphene [J].
Gupta, Ankur ;
Sakthivel, Tamilselvan ;
Seal, Suclipta .
PROGRESS IN MATERIALS SCIENCE, 2015, 73 :44-126