On fractional order differential equations model for nonlocal epidemics

被引:334
作者
Ahmed, E.
Elgazzar, A. S.
机构
[1] Al Jouf Univ, Dept Math, Fac Sci, Al Jouf, Saudi Arabia
[2] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
[3] Fac Educ, Dept Math, Al Arish 45111, Egypt
关键词
fractional order differential equations; stability; applications to nonlocal epidemic models;
D O I
10.1016/j.physa.2007.01.010
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A fractional order model for nonlocal epidemics is given. Stability of fractional order equations is studied. The results are expected to be relevant to foot-and-mouth disease, SARS and avian flu. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:607 / 614
页数:8
相关论文
共 15 条
[1]   Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models [J].
Ahmed, E. ;
El-Sayed, A. M. A. ;
El-Saka, H. A. A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (01) :542-553
[2]   An epidemic model on small-world networks and ring vaccination [J].
Ahmed, E ;
Hegazi, AS ;
Elgazzar, AS .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2002, 13 (02) :189-198
[3]  
AHMED E, 2005, UNPUB
[4]   Stochastic and deterministic models for SIS epidemics among a population partitioned into households [J].
Ball, F .
MATHEMATICAL BIOSCIENCES, 1999, 156 (1-2) :41-67
[5]  
BARNETT S, 1990, MATRICES
[6]  
DIEKMANN O, 2000, MATH EPIDEMIOLOGY IN
[7]  
EDELSTEINKESHET L, 2004, SIAM CLASSIC APPL MA, V46
[8]  
Kaneko K., 1993, THEORY APPL COUPLED
[9]  
LAJMANOVICH A, 1976, Mathematical Biosciences, V28, P221, DOI 10.1016/0025-5564(76)90125-5
[10]   Chaos in the fractional order Chen system and its control [J].
Li, CG ;
Chen, GR .
CHAOS SOLITONS & FRACTALS, 2004, 22 (03) :549-554