Discrete one-dimensional quasi-periodic Schrodinger operators with pure point spectrum

被引:74
作者
Eliasson, LH [1 ]
机构
[1] Royal Inst Technol, Dept Math, S-10044 Stockholm, Sweden
关键词
D O I
10.1007/BF02392742
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:153 / 196
页数:44
相关论文
共 14 条
[1]  
[Anonymous], 1965, PERTURBATION SPECTRA
[2]  
Carmona R., 1990, SPECTRAL THEORY RAND, DOI 10.1007/978-1-4939-0512-6_4
[3]   METHODS OF KAM-THEORY FOR LONG-RANGE QUASI-PERIODIC OPERATORS ON Z-NU - PURE POINT SPECTRUM [J].
CHULAEVSKY, VA ;
DINABURG, EI .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 153 (03) :559-577
[4]  
EARL A., 1955, THEORY ORDINARY DIFF
[5]   FLOQUET SOLUTIONS FOR THE 1-DIMENSIONAL QUASI-PERIODIC SCHRODINGER-EQUATION [J].
ELIASSON, LH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 146 (03) :447-482
[6]  
Folland G., 1976, INTRO PARTIAL DIFFER, DOI DOI 10.1515/9780691213033
[7]   LOCALIZATION FOR A CLASS OF ONE-DIMENSIONAL QUASI-PERIODIC SCHRODINGER-OPERATORS [J].
FROHLICH, J ;
SPENCER, T ;
WITTWER, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 132 (01) :5-25
[8]   OPERATORS WITH SINGULAR CONTINUOUS-SPECTRUM .3. ALMOST-PERIODIC SCHRODINGER-OPERATORS [J].
JITOMIRSKAYA, S ;
SIMON, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (01) :201-205
[9]   ANDERSON LOCALIZATION FOR THE ALMOST MATHIEU EQUATION - A NONPERTURBATIVE PROOF [J].
JITOMIRSKAYA, SY .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (01) :49-57
[10]  
Kato T., 1976, PERTURBATION THEORY