Tunable solid-state thermal rectification by asymmetric nonlinear radiation

被引:5
作者
Lee, Junbyeong [1 ]
Jan, Agha Aamir [1 ]
Ganorkar, Shraddha Prakash [1 ]
Cho, Jungwan [1 ]
Lee, Dongwoo [1 ]
Baik, Seunghyun [1 ]
机构
[1] Sungkyunkwan Univ, Sch Mech Engn, Suwon 16419, South Korea
基金
新加坡国家研究基金会;
关键词
CONDUCTIVITY; RECTIFIER; INTERFACE; BEHAVIOR;
D O I
10.1039/d1mh00425e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Thermal rectification is a direction-dependent asymmetric heat transport phenomenon. Here we report the tunable solid-state thermal rectification by asymmetric nonlinear far-field radiation. The asymmetry in thermal conductivity and emissivity of a three-terminal device is realized by sputtering a thin metal film (radiation barrier: niobium, copper, or silver) on the top right half of a polyethylene terephthalate strip (emitter). Both the experiment and finite element analysis are in excellent agreement, revealing a thermal rectification ratio (TR) of 13.0% for the niobium-deposited specimen. The simulation demonstrates that the TR can be further increased to 74.5% by tuning asymmetry in thermal conductivity, emissivity, and surface area. The rectification can also be actively controlled, by gating the environmental temperature, resulting in a maximum TR of 93.1%. This work is applicable for a wide range of temperatures and device sizes, which may find applications in on-demand heat control and thermal logic gates.
引用
收藏
页码:1998 / 2005
页数:8
相关论文
共 29 条
  • [1] Near-field radiative transfer based thermal rectification using doped silicon
    Basu, Soumyadipta
    Francoeur, Mathieu
    [J]. APPLIED PHYSICS LETTERS, 2011, 98 (11)
  • [2] Solid-state thermal rectifier
    Chang, C. W.
    Okawa, D.
    Majumdar, A.
    Zettl, A.
    [J]. SCIENCE, 2006, 314 (5802) : 1121 - 1124
  • [3] Thermal rectification and negative differential thermal resistance behaviors in graphene/hexagonal boron nitride heterojunction
    Chen, Xue-Kun
    Xie, Zhong-Xiang
    Zhou, Wu-Xing
    Tang, Li-Ming
    Chen, Ke-Qiu
    [J]. CARBON, 2016, 100 : 492 - 500
  • [4] THERMAL-CONDUCTIVITY OF POLYMERS
    CHOY, CL
    [J]. POLYMER, 1977, 18 (10) : 984 - 1004
  • [5] Thermal conductivity behaviour of polymers around glass transition and crystalline melting temperatures
    dos Santos, W. N.
    de Sousa, J. A.
    Gregorio, R., Jr.
    [J]. POLYMER TESTING, 2013, 32 (05) : 987 - 994
  • [6] Size effect on the emissivity of thin films
    Edalatpour, Sheila
    Francoeur, Mathieu
    [J]. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2013, 118 : 75 - 85
  • [7] A Thermal Diode Based on Nanoscale Thermal Radiation
    Fiorino, Anthony
    Thompson, Dakotah
    Zhu, Linxiao
    Mittapally, Rohith
    Biehs, Svend-Age
    Bezencenet, Odile
    El-Bondry, Nadia
    Bansropun, Shailendra
    Ben-Abdallah, Philippe
    Meyhofer, Edgar
    Reddy, Pramod
    [J]. ACS NANO, 2018, 12 (06) : 5774 - 5779
  • [8] VO2 Substrate Effect on the Thermal Rectification of a Far-Field Radiative Diode
    Forero-Sandoval, I. Y.
    Chan-Espinoza, J. A.
    Ordonez-Miranda, J.
    Alvarado-Gil, J. J.
    Dumas-Bouchiat, F.
    Champeaux, C.
    Joulain, K.
    Ezzahri, Y.
    Drevillon, J.
    Gomez-Heredia, C. L.
    Ramirez-Rincon, J. A.
    [J]. PHYSICAL REVIEW APPLIED, 2020, 14 (03)
  • [9] Thermal calculator
    Hamed, Ahmed
    Elzouka, Mahmoud
    Ndao, Sidy
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 134 : 359 - 365
  • [10] Incropera F.P., 2017, INCROPERAS PRINCIPLE