F127 Template on Pore Structure and Electrochemical Performances of Mesoporous SnO2

被引:1
作者
Zhai Li-Li [1 ,2 ]
Zhang Jiang [1 ,2 ]
Li Xuan-Ke [1 ,2 ]
Cong Ye [1 ,2 ]
Dong Zhi-Jun [1 ,2 ]
Yuan Guan-Ming [1 ,2 ]
机构
[1] Wuhan Univ Sci & Technol, State Key Lab Refractories & Met, Wuhan 430081, Peoples R China
[2] Wuhan Univ Sci & Technol, Sch Chem Engn & Technol, Hubei Prov Key Lab Coal Convers & New Carbon Mat, Wuhan 430081, Peoples R China
基金
中国国家自然科学基金;
关键词
mesoporous materials; tin dioxide (SnO2); pore structure; lithium-ion battery; LITHIUM; TIN; COMPOSITE; ANODE; ELECTRODE; OXIDE; NANOPARTICLES; NANOSHEETS;
D O I
10.15541/jim20150521
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Mesoporous SnO2 was synthesized via a hydrothermal process using tin chloride (SnCl4 center dot 5H(2)O) and urea ((NH2)(2)CO) as raw materials, with a block polyether F127(EO106-PO70-EO106) as a template. The analysis results (XRD, TEM, BET, etc) show that the amount of F127 has significant influence on pore structure of mesoporous SnO2. With increasing dosage of F127, specific surface area and pore volume of the mesoporous SnO2 increase with pore size distribution relatively broad. The results of the electrochemical tests indicate that existence of mesopores not only provide the path for deinsertion and insertion of Li+, but also buffer the huge volume expansion of tin dioxide, which consequently improves the electrochemical performances of mesoporous SnO2 as an anode material. When the amount of F127 is 6.0 g, the as-prepared 6F-SnO2 with a BET specific surface area of 124 m(2)/g and average pore size of 4.94 nm, displays optimal cycle performance and rate performance which the reversible capacity of the 6F-SnO2 maintains 434 mAh/g at 60 mA/g after 30 cycles. In addition, the cyclic voltammetric test reveals that the reversible reduction of partial Li2O with high activity can provide additional reversible capacity.
引用
收藏
页码:588 / 596
页数:9
相关论文
共 27 条
[1]  
[Anonymous], [No title captured]
[2]   On the aggregation of tin in SnO composite glasses caused by the reversible reaction with lithium [J].
Courtney, IA ;
McKinnon, WR ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (01) :59-68
[3]   Electrochemical and in situ x-ray diffraction studies of the reaction of lithium with tin oxide composites [J].
Courtney, IA ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (06) :2045-2052
[4]   MECHANISMS FOR LITHIUM INSERTION IN CARBONACEOUS MATERIALS [J].
DAHN, JR ;
ZHENG, T ;
LIU, YH ;
XUE, JS .
SCIENCE, 1995, 270 (5236) :590-593
[5]   Ordered, nanostructured tin-based oxides/carbon composite as the negative-electrode material for lithium-ion batteries [J].
Fan, J ;
Wang, T ;
Yu, CZ ;
Tu, B ;
Jiang, ZY ;
Zhao, DY .
ADVANCED MATERIALS, 2004, 16 (16) :1432-+
[6]   Tin-based amorphous oxide: A high-capacity lithium-ion-storage material [J].
Idota, Y ;
Kubota, T ;
Matsufuji, A ;
Maekawa, Y ;
Miyasaka, T .
SCIENCE, 1997, 276 (5317) :1395-1397
[7]   Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials [J].
Kim, Hyesun ;
Cho, Jaephil .
JOURNAL OF MATERIALS CHEMISTRY, 2008, 18 (07) :771-775
[8]   Growth of Ultrafine SnO2 Nanoparticles within Multiwall Carbon Nanotube Networks: Non-Solution Synthesis and Excellent Electrochemical Properties as Anodes for Lithium Ion Batteries [J].
Li, Yudong ;
Lu, Xuan ;
Wang, Hongkang ;
Xie, Chong ;
Yang, Guang ;
Niu, Chunming .
ELECTROCHIMICA ACTA, 2015, 178 :778-785
[9]  
Li ZP, 2008, CHEM J CHINESE U, V29, P13
[10]   Facile synthesis of ultrafine carbon-coated SnO2 nanoparticles for high-performance reversible lithium storage [J].
Liu, Bing ;
Cao, Minhua ;
Zhao, Xinyu ;
Tian, Yuan ;
Hu, Changwen .
JOURNAL OF POWER SOURCES, 2013, 243 :54-59