An illumination normalization model for face recognition under varied lighting conditions

被引:27
作者
An, Gaoyun [1 ]
Wu, Jiying [1 ]
Ruan, Qiuqi [1 ]
机构
[1] Beijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Face recognition; Illumination invariant; Multi-scale fusion; Self-quotient image; Region-based histogram equalization; IMAGES; EIGENFACES; OBJECT;
D O I
10.1016/j.patrec.2010.01.021
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a novel illumination normalization model is proposed for the pre-processing of face recognition under varied lighting conditions. The novel model could compensate all the illumination effects in face samples, like the diffuse reflection, specular reflection, attached shadow and cast shadow. Firstly, it uses the TV_L-1 model to get the low-frequency part of face image, and adopts the self-quotient model to normalize the diffuse reflection and attached shadow. Then it generates the illumination invariant small-scale part of face sample. Secondly, TV_L-2 model is used to get the noiseless large-scale part of face sample. All kinds of illumination effects in the large-scale part are further removed by the region-based histogram equalization. Thirdly, two parts are fused to generate the illumination invariant face sample. The result of our model contains multi-scaled image information, and all illumination effects in face samples are compensated. Finally, high-order statistical relationships among variables of samples are extracted for classifier. Experimental results on some large scale face databases prove that the processed image by our model could largely improve the recognition performances of conventional methods under low-level lighting conditions. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1056 / 1067
页数:12
相关论文
共 34 条
[1]   Face recognition: The problem of compensating for changes in illumination direction [J].
Adini, Y ;
Moses, Y ;
Ullman, S .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (07) :721-732
[2]  
[Anonymous], 2001, P WORKSH MOD VERS EX
[3]   Face recognition by independent component analysis [J].
Bartlett, MS ;
Movellan, JR ;
Sejnowski, TJ .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2002, 13 (06) :1450-1464
[4]   Lambertian reflectance and linear subspaces [J].
Basri, R ;
Jacobs, DW .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (02) :218-233
[5]   What is the set of images of an object under all possible lighting conditions? [J].
Belhumeur, PN ;
Kriegman, DJ .
1996 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, 1996, :270-277
[6]   Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection [J].
Belhumeur, PN ;
Hespanha, JP ;
Kriegman, DJ .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (07) :711-720
[7]   Aspects of total variation regularized L1 function approximation [J].
Chan, TF ;
Esedoglu, S .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2005, 65 (05) :1817-1837
[8]  
Chen T, 2005, PROC CVPR IEEE, P532
[9]   Total variation models for variable lighting face recognition [J].
Chen, Terrence ;
Yin, Wotao ;
Zhou, Xiang Sean ;
Comaniciu, Dorin ;
Huang, Thomas S. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (09) :1519-1524
[10]  
Delaporte V, 2005, PROG UROL, V15, P260