Understanding effects of conductive additives in lithium-sulfur batteries

被引:15
作者
Han, Xiaoxiao [1 ]
Cai, Jiyu [1 ]
Wang, Xin [1 ]
Liu, Yongqiang [1 ]
Zhou, Hua [2 ]
Meng, Xiangbo [1 ]
机构
[1] Univ Arkansas, Dept Mech Engn, Fayetteville, AR 72701 USA
[2] Argonne Natl Lab, Adv Photon Source, 9700 South Cass Ave, Lemont, IL 60439 USA
基金
美国国家科学基金会;
关键词
Lithium-sulfur battery; Sulfur cathode; Conductive additive; Carbon black; Graphene; CATHODE MATERIALS; NETWORK;
D O I
10.1016/j.mtcomm.2020.101934
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Since 2009, lithium-sulfur (Li-S) batteries have been attracting much research interest, ascribed to their high energy density and cost-effectiveness. However, their S cathodes are harassed by the poor conductivity, shuttling of lithium polysulfides (LPSs), and large volume change. In improving conductivity of S cathodes, carbon materials are widely used as conductive additives. However, there still lacks a comparative study on their geometric and structural effects in Li-S batteries. To this end, a systematic investigation is conducted on two different typical conductive additives, carbon black (CB)(1) and nitrogen-doped graphene nanosheets (N-GNS)(2). This work reveals that, compared to the zero-dimensional (OD) CB nanoparticles, the two-dimensional (2D) N-GNS is structurally less defective and has a larger surface area. As a result, the 2D structure of the N-GNS helps achieve higher capacity retention but inhibits Li-ion transportation. In comparison, the OD structure of the CB facilitates the transportation of Li-ions with a higher initial capacity but exposed to a severer shuttling behavior of LPSs. It is also found that a combination of the CB and N-GNS enables better performance of Li-S batteries, in terms of sustainable capacity, Coulombic efficiency, and rate capability. This study is inspiring for designing better S cathodes for Li-S batteries.
引用
收藏
页数:8
相关论文
共 37 条
[1]   Structure and Dynamics of Polysulfide Clusters in a Nonaqueous Solvent Mixture of 1,3-Dioxolane and 1,2-Dimethoxyethane [J].
Andersen, Amity ;
Rajput, Nay Nidhi ;
Han, Kee Sung ;
Pan, Huilin ;
Govind, Niranjan ;
Persson, Kristin A. ;
Mueller, Karl T. ;
Murugesan, Vijayakumar .
CHEMISTRY OF MATERIALS, 2019, 31 (07) :2308-2319
[2]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[3]   Conductive Nanocrystalline Niobium Carbide as High-Efficiency Polysulfides Tamer for Lithium-Sulfur Batteries [J].
Cai, Wenlong ;
Li, Gaoran ;
Zhang, Kailong ;
Xiao, Guannan ;
Wang, Can ;
Ye, Kefen ;
Chen, Zhongwei ;
Zhu, Yongchun ;
Qian, Yitai .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (02)
[4]   Investigations of lithium-sulfur batteries using electrochemical impedance spectroscopy [J].
Canas, Natalia A. ;
Hirose, Kei ;
Pascucci, Brigitta ;
Wagner, Norbert ;
Friedrich, K. Andreas ;
Hiesgen, Renate .
ELECTROCHIMICA ACTA, 2013, 97 :42-51
[5]   Electrochemical Impedance Spectroscopy Study of a Lithium/Sulfur Battery: Modeling and Analysis of Capacity Fading [J].
Deng, Zhaofeng ;
Zhang, Zhian ;
Lai, Yanqing ;
Liu, Jin ;
Li, Jie ;
Liu, Yexiang .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (04) :A553-A558
[6]   Single-wall carbon nanotube network enabled ultrahigh sulfur-content electrodes for high-performance lithium-sulfur batteries [J].
Fang, Ruopian ;
Li, Guoxian ;
Zhao, Shiyong ;
Yin, Lichang ;
Du, Kui ;
Hou, Pengxiang ;
Wang, Shaogang ;
Cheng, Hui-Ming ;
Liu, Chang ;
Li, Feng .
NANO ENERGY, 2017, 42 :205-214
[7]   Toward More Reliable Lithium-Sulfur Batteries: An All-Graphene Cathode Structure [J].
Fang, Ruopian ;
Zhao, Shiyong ;
Pei, Songfeng ;
Qian, Xitang ;
Hou, Peng-Xiang ;
Cheng, Hui-Ming ;
Liu, Chang ;
Li, Feng .
ACS NANO, 2016, 10 (09) :8676-8682
[8]   The importance of interphase contacts in Li ion electrodes: The meaning of the high-frequency impedance arc [J].
Gaberscek, Miran ;
Moskon, Joze ;
Erjavec, Bostjan ;
Dominko, Robert ;
Jamnik, Janez .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (10) :A170-A174
[9]   Thermal Exfoliation of Layered Metal-Organic Frameworks into Ultrahydrophilic Graphene Stacks and Their Applications in Li-S Batteries [J].
Hao, Guang-Ping ;
Tang, Cheng ;
Zhang, En ;
Zhai, Peiyan ;
Yin, Jun ;
Zhu, Wancheng ;
Zhang, Qiang ;
Kaskel, Stefan .
ADVANCED MATERIALS, 2017, 29 (37)
[10]   Separation of Charge Transfer and Contact Resistance in LiFePO4-Cathodes by Impedance Modeling [J].
Illig, J. ;
Ender, M. ;
Chrobak, T. ;
Schmidt, J. P. ;
Klotz, D. ;
Ivers-Tiffee, E. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (07) :A952-A960