Thickness of Julia sets of Feigenbaum polynomials with high order critical points

被引:2
作者
Levin, G [1 ]
Swiatek, G
机构
[1] Hebrew Univ Jerusalem, Dept Math, IL-91904 Jerusalem, Israel
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.crma.2004.07.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider unimodal polynomials with Feigenbaum topological type and critical points whose orders tend to infinity. It is shown that the hyperbolic dimensions of their Julia set go to 2; furthermore, that the Hausdorff dimensions of the basins of attraction of their Feigenbaum attractors also tend to, 2. The proof is based on constructing a limiting dynamics with a flat critical point. To cite this article: G. Levin, G. Swiqtek, C. R. Acad. Sci. Paris, Ser. I 339 (2004). (C) 2004 Academie des sciences. Published by Elsevier SAS. All rights reserved.
引用
收藏
页码:421 / 424
页数:4
相关论文
共 7 条
[1]   Wild Cantor attractors exist [J].
Bruin, H ;
Keller, G ;
Nowicki, T ;
vanStrien, S .
ANNALS OF MATHEMATICS, 1996, 143 (01) :97-130
[2]  
Eckmann J.-P., 1985, LECT NOTES PHYS, V227
[3]   Collet, Eckmann and Holder [J].
Graczyk, J ;
Smirnov, S .
INVENTIONES MATHEMATICAE, 1998, 133 (01) :69-96
[4]  
LEVIN G, 2003, UNPUB DYNAMICS UNIVE
[5]  
MCMULLEN C, 1998, ANN MATH STUD, V142
[6]  
Przytycki F, 1998, FUND MATH, V155, P189
[7]   The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets [J].
Shishikura, M .
ANNALS OF MATHEMATICS, 1998, 147 (02) :225-267