A cheap asymmetric supercapacitor with high energy at high power: Activated carbon//K0.27MnO2•0.6H2O

被引:174
作者
Qu, Qunting [2 ]
Li, Lei [2 ]
Tian, Shu [2 ]
Guo, Wenling [2 ]
Wu, Yuping [2 ]
Holze, Rudolf [1 ]
机构
[1] Tech Univ Chemnitz, Inst Chem, D-09107 Chemnitz, Germany
[2] Fudan Univ, Dept Chem, NEML, Shanghai Key Lab Mol Catalysis & Innovat Mat, Shanghai 200433, Peoples R China
关键词
Supercapacitor; K0.27MnO2; K+; Electrochemical behavior; Aqueous electrolyte; MANGANESE OXIDES; ELECTROCHEMICAL PERFORMANCE; LAYERED MNO2; CARBON; CAPACITOR; BEHAVIOR; CATHODE; LI2SO4; KMNO4;
D O I
10.1016/j.jpowsour.2009.10.108
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Studies of the electrochemical behavior of K0.27MnO2 center dot 0.6H(2)O in K2SO4 show the reversible intercalation/deintercalation of K+-ions in the lattice. An asymmetric supercapacitor activated carbon (AC)/0.5 mol l(-1) K2SO4/K0.27MnO2 center dot 0.6H(2)O was assembled and tested successfully. It shows an energy density of 25.3 Wh kg(-1) at a power density of 140W kg(-1); at the same time it keeps a very good rate behavior with an energy density of 17.6 Wh kg-1 at a power density of 2 kW kg-1 based on the total mass of the active electrode materials, which is higher than that of AC/0.5 mol l(-1) Li2SO4/LiMn2O4. In addition, this asymmetric supercapacitor shows excellent cycling behavior without the need to remove oxygen from the electrolyte solution. This can be ascribed in part to the stability of the larnellar structure of K0.27MnO2 center dot 0.6H(2)O. This asymmetric aqueous capacitor has great promise for practical applications due to high energy density at high power density. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:2789 / 2794
页数:6
相关论文
共 29 条
[11]   High-energy density graphite/AC capacitor in organic electrolyte [J].
Khomenko, V. ;
Raymundo-Pinero, E. ;
Beguin, F. .
JOURNAL OF POWER SOURCES, 2008, 177 (02) :643-651
[12]   Preparation of layered MnO2 via thermal decomposition of KMnO4 and its electrochemical characterizations [J].
Kim, SH ;
Kim, SJ ;
Oh, SM .
CHEMISTRY OF MATERIALS, 1999, 11 (03) :557-563
[13]   Synthesis of layered MnO2 by calcination of KMnO4 for rechargeable lithium battery cathode [J].
Komaba, S ;
Kumagai, N ;
Chiba, S .
ELECTROCHIMICA ACTA, 2000, 46 (01) :31-37
[14]   Electrochemical capacitors with KCl electrolyte [J].
Lee, HY ;
Manivannan, V ;
Goodenough, JB .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE C-CHIMIE, 1999, 2 (11-13) :565-577
[15]   Studies on structure and electrochemical properties of pillared M-MnO2 (M=Ba2+, Sr2+, ZrO2+) [J].
Lu, Yanluo ;
Yang, Lan ;
Wei, Min ;
Xie, Yaning ;
Liu, Tao .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2007, 11 (09) :1157-1162
[16]   Characterization of structure and electrochemical properties of lithium manganese oxides for lithium secondary batteries hydrothermally synthesized from δ-KxMnO2 [J].
Lu, YL ;
Wei, M ;
Wang, ZQ ;
Evans, DG ;
Duan, X .
ELECTROCHIMICA ACTA, 2004, 49 (14) :2361-2367
[17]   Electrochemical synthesis of layered manganese oxides intercalated with tetraalkylammonium ions [J].
Nakayama, M ;
Konishi, S ;
Tagashira, H ;
Ogura, K .
LANGMUIR, 2005, 21 (01) :354-359
[18]   Redoxable nanosheet crystallites of MnO2 derived via delamination of a layered manganese oxide [J].
Omomo, Y ;
Sasaki, T ;
Wang, LZ ;
Watanabe, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (12) :3568-3575
[19]   An electrochemical capacitor based on a Ni(OH)2/activated carbon composite electrode [J].
Park, JH ;
Park, OO ;
Shin, KH ;
Jin, CS ;
Kim, JH .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2002, 5 (02) :H7-H10
[20]   Ion transport membranes based on conducting polymers [J].
Partridge, AC ;
Milestone, C ;
Too, CO ;
Wallace, GG .
JOURNAL OF MEMBRANE SCIENCE, 1997, 132 (02) :245-253