Applying chemical engineering concepts to non-thermal plasma reactors

被引:5
作者
Affonso Nobrega, Pedro [1 ]
Gaunand, Alain [2 ]
Rohani, Vandad [1 ]
Cauneau, Francois [1 ]
Fulcheri, Laurent [1 ]
机构
[1] PSL Res Univ, MINES ParisTech, PERSEE Ctr Proc Renewable Energy & Energy Syst, CS 10207 Rue Claude Daunesse, F-06904 Sophia Antipolis, France
[2] PSL Res Univ, MINES ParisTech, CTP Ctr Thermodynam pProc, 35 Rue St Honore, F-77300 Fontainebleau, France
关键词
non-thermal plasma; chemical engineering; dielectric barrier discharge (DBD); corona discharge; plug flow reactor; volatile organic compounds; DIELECTRIC BARRIER DISCHARGE; CORONA DISCHARGE; HIGHER HYDROCARBONS; DECOMPOSITION; FLOW; METHANE; AIR; TEMPERATURE; PARAMETERS; CONVERSION;
D O I
10.1088/2058-6272/aab301
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Process scale-up remains a considerable challenge for environmental applications of non-thermal plasmas. Undersanding the impact of reactor hydrodynamics in the performance of the process is a key step to overcome this challenge. In this work, we apply chemical engineering concepts to analyse the impact that different non-thermal plasma reactor configurations and regimes, such as laminar or plug flow, may have on the reactor performance. We do this in the particular context of the removal of pollutants by non-thermal plasmas, for which a simplified model is available. We generalise this model to different reactor configurations and, under certain hypotheses, we show that a reactor in the laminar regime may have a behaviour significantly different from one in the plug flow regime, often assumed in the non-thermal plasma literature. On the other hand, we show that a packed-bed reactor behaves very similarly to one in the plug flow regime. Beyond those results, the reader will find in this work a quick introduction to chemical reaction engineering concepts.
引用
收藏
页数:11
相关论文
共 50 条
[1]   The 2017 Plasma Roadmap: Low temperature plasma science and technology [J].
Adamovich, I. ;
Baalrud, S. D. ;
Bogaerts, A. ;
Bruggeman, P. J. ;
Cappelli, M. ;
Colombo, V. ;
Czarnetzki, U. ;
Ebert, U. ;
Eden, J. G. ;
Favia, P. ;
Graves, D. B. ;
Hamaguchi, S. ;
Hieftje, G. ;
Hori, M. ;
Kaganovich, I. D. ;
Kortshagen, U. ;
Kushner, M. J. ;
Mason, N. J. ;
Mazouffre, S. ;
Thagard, S. Mededovic ;
Metelmann, H-R ;
Mizuno, A. ;
Moreau, E. ;
Murphy, A. B. ;
Niemira, B. A. ;
Oehrlein, G. S. ;
Petrovic, Z. Lj ;
Pitchford, L. C. ;
Pu, Y-K ;
Rauf, S. ;
Sakai, O. ;
Samukawa, S. ;
Starikovskaia, S. ;
Tennyson, J. ;
Terashima, K. ;
Turner, M. M. ;
van de Sanden, M. C. M. ;
Vardelle, A. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (32)
[2]   Kinetic mechanism of molecular energy transfer and chemical reactions in low-temperature air-fuel plasmas [J].
Adamovich, Igor V. ;
Li, Ting ;
Lempert, Walter R. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 373 (2048)
[3]   Process intensification in gas-to-liquid reactions: plasma promoted Fischer-Tropsch synthesis for hydrocarbons at low temperatures and ambient pressure [J].
Al-Harrasi, Wail S. S. ;
Zhang, Kui ;
Akay, Galip .
GREEN PROCESSING AND SYNTHESIS, 2013, 2 (05) :479-490
[4]   Nanosecond-Pulsed Discharge Plasma Splitting of Carbon Dioxide [J].
Bak, Moon Soo ;
Im, Seong-Kyun ;
Cappelli, Mark .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2015, 43 (04) :1002-1007
[5]   Removal of formaldehyde by a pulsed dielectric barrier discharge in dry air in the 20 °C to 300 °C temperature range [J].
Blin-Simiand, N. ;
Pasquiers, S. ;
Magne, L. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (19)
[6]   Plasma based CO2 and CH4 conversion: A modeling perspective [J].
Bogaerts, Annemie ;
De Bie, Christophe ;
Snoeckx, Ramses ;
Kozak, Tomas .
PLASMA PROCESSES AND POLYMERS, 2017, 14 (06)
[7]   Modelling the impact of non-equilibrium discharges on reactive mixtures for simulations of plasma-assisted ignition in turbulent flows [J].
Castela, Maria ;
Fiorina, Benoit ;
Coussement, Axel ;
Gicquel, Olivier ;
Darabiha, Nasser ;
Laux, Christophe O. .
COMBUSTION AND FLAME, 2016, 166 :133-147
[8]   Decomposition of toluene and acetone in packed dielectric barrier discharge reactors [J].
Chang, CL ;
Lin, TS .
PLASMA CHEMISTRY AND PLASMA PROCESSING, 2005, 25 (03) :227-243
[9]   Ozone production in the positive DC corona discharge: Model and comparison to experiments [J].
Chen, JH ;
Davidson, JH .
PLASMA CHEMISTRY AND PLASMA PROCESSING, 2002, 22 (04) :495-522
[10]   A critical review of dispersion in packed beds [J].
Delgado, JMPQ .
HEAT AND MASS TRANSFER, 2006, 42 (04) :279-310