Sparse representation-based human detection: a scale-embedded dictionary approach

被引:7
作者
Vinay, G. Krishna [1 ]
Haque, S. M. [1 ]
Babu, R. Venkatesh [2 ]
Ramakrishnan, K. R. [1 ]
机构
[1] Indian Inst Sci, Dept Elect Engn, Bangalore 560012, Karnataka, India
[2] Indian Inst Sci, SERC, Bangalore 560012, Karnataka, India
关键词
Human detection; Histogram of oriented gradients (HOG); l(1)-Norm minimization; Sparse representation; Sparse classification; Scale-embedded dictionary;
D O I
10.1007/s11760-015-0781-5
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Human detection is a complex problem owing to the variable pose that they can adopt. Here, we address this problem in sparse representation framework with an overcomplete scale-embedded dictionary. Histogram of oriented gradient features extracted from the candidate image patches are sparsely represented by the dictionary that contain positive bases along with negative and trivial bases. The object is detected based on the proposed likelihood measure obtained from the distribution of these sparse coefficients. The likelihood is obtained as the ratio of contribution of positive bases to negative and trivial bases. The positive bases of the dictionary represent the object (human) at various scales. This enables us to detect the object at any scale in one shot and avoids multiple scanning at different scales. This significantly reduces the computational complexity of detection task. In addition to human detection, it also finds the scale at which the human is detected due to the scale-embedded structure of the dictionary.
引用
收藏
页码:585 / 592
页数:8
相关论文
共 25 条
[1]   On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems [J].
Amaldi, E ;
Kann, V .
THEORETICAL COMPUTER SCIENCE, 1998, 209 (1-2) :237-260
[2]  
[Anonymous], CVPR
[3]  
[Anonymous], 2008, CVPR
[4]   Enhancing Sparsity by Reweighted l1 Minimization [J].
Candes, Emmanuel J. ;
Wakin, Michael B. ;
Boyd, Stephen P. .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2008, 14 (5-6) :877-905
[5]   Atomic decomposition by basis pursuit [J].
Chen, SSB ;
Donoho, DL ;
Saunders, MA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (01) :33-61
[6]   Histograms of oriented gradients for human detection [J].
Dalal, N ;
Triggs, B .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, :886-893
[7]   For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution [J].
Donoho, DL .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (06) :797-829
[8]   Object Detection with Discriminatively Trained Part-Based Models [J].
Felzenszwalb, Pedro F. ;
Girshick, Ross B. ;
McAllester, David ;
Ramanan, Deva .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (09) :1627-1645
[9]  
Guo K., 2010, ICIP
[10]  
Krishna Vinay G., 2012, ICASSP