Brill-Noether theory for cyclic covers

被引:3
作者
Schwarz, Irene [1 ]
机构
[1] Humboldt Univ, Inst Math, Berlin, Germany
关键词
LIMIT LINEAR SERIES; MODULI; CURVES;
D O I
10.1016/j.jpaa.2016.12.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We recall that the Brill-Noether Theorem gives necessary and sufficient conditions for the existence of a g(d)(r). Here we consider a general n-fold, etale, cyclic cover p : (C) over tilde -> C of a curve C of genus g and investigate for which numbers r, d a g(d)(r) exists on (C) over tilde. For r = 1 this means computing the gonality of (C) over tilde. Using degeneration to a special singular example (containing a Castelnuovo canonical curve) and the theory of limit linear series for tree-like curves we show that the Plficker formula yields a necessary condition for the existence of a g(d)(r) which is only slightly weaker than the sufficient condition given by the results of Laksov and Kleimann [24], for all n, r, d. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:2420 / 2430
页数:11
相关论文
共 30 条
[1]   Twisted bundles and admissible covers [J].
Abramovich, D ;
Corti, A ;
Vistoli, A .
COMMUNICATIONS IN ALGEBRA, 2003, 31 (08) :3547-3618
[2]   Compactifying the space of stable maps [J].
Abramovich, D ;
Vistoli, A .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 15 (01) :27-75
[3]   Green's conjecture for general covers [J].
Aprodu, Marian ;
Farkas, Gavril .
COMPACT MODULI SPACES AND VECTOR BUNDLES, 2012, 564 :211-+
[4]  
Arbarello E., 1985, GRUNDLEHREN MATH WIS, V1
[5]  
Arbarello E., 2011, Geometry of AlgebraicCurves, Vol. 2 ofGrundlehren der mathematischen Wissenschaften(, V2
[6]  
Barth W. P., 2004, Compact complex surfaces, V4
[7]  
BERNSTEIN M., 1999, THESIS
[8]  
Castelnuovo G., 1889, REND R ACCAD LINCEI, V4, P5
[9]  
Chiodo A., 2015, ARXIV12050201V4
[10]  
Chiodo A, 2013, INVENT MATH, V194, P73, DOI 10.1007/s00222-012-0441-0