Drainage reality in terrains with higher-order Delaunay triangulations

被引:4
作者
Biniaz, Ahmad [1 ]
Dastghaibyfard, Gholamhossein [1 ]
机构
[1] Shiraz Univ, Dept Comp Sci & Engn, Shiraz, Iran
来源
ADVANCES IN 3D GEOINFORMATION SYSTEMS | 2008年
关键词
D O I
10.1007/978-3-540-72135-2_12
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Terrains are often modeled by triangulations, which ideally should have 'nice shape' triangles and reality of drainage in terrains (few local minima and drainage lines in the bottoms of valleys). Delaunay triangulation is a good way to formalize nice shape, and if higher-order Delaunay triangulations are used, drainage reality can be achieved. Two heuristics are presented, one for reducing the number of local minima and one for reducing the number of valley edges and components. The empirical results show how well they perform on real-world data; on average we see a 16% improvement over known algorithms.
引用
收藏
页码:199 / 211
页数:13
相关论文
共 9 条
[1]  
CHEW LP, 1989, ALGORITHMICA, V4, P97, DOI 10.1007/BF01553881
[2]   Generating realistic terrains with higher-order Delaunay triangulations [J].
de Kok, Thierry ;
van Kreveld, Marc ;
Loffler, Maarten .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2007, 36 (01) :52-65
[3]  
DEBERG M, 1996, P 8 CAN C COMP GEOM, P325
[4]   Constrained higher order Delaunay triangulations [J].
Gudmundsson, J ;
Haverkort, HJ ;
van Kreveld, M .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2005, 30 (03) :271-277
[5]   Higher order Delaunay triangulations [J].
Gudmundsson, J ;
Hammar, M ;
van Kreveld, M .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2002, 23 (01) :85-98
[6]  
Mcallister M., 1999, P ASPRS ACSM ANN C
[7]  
Ramos E. A., 1999, Proceedings of the Fifteenth Annual Symposium on Computational Geometry, P390, DOI 10.1145/304893.304993
[8]  
Shewchuk Jonathan Richard, 1999, LECT NOTES DELAUNAY
[9]  
YU S, 1997, ADV GIS RES, V2, P829