How Metallic Protection Layers Extend the Lifetime of NASICON-Based Solid-State Lithium Batteries

被引:56
作者
Cortes, Francisco Javier Quintero [1 ]
Lewis, John A. [1 ]
Tippens, Jared [2 ]
Marchese, Thomas S. [1 ]
McDowell, Matthew T. [1 ,2 ]
机构
[1] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
LI-METAL; DENDRITE FORMATION; ELECTROLYTE; ION; STABILITY; ANODE; INTERFACE; CONDUCTIVITY; DEGRADATION; PERFORMANCE;
D O I
10.1149/2.0032005JES
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The use of solid-state electrolytes (SSEs) within batteries is a promising strategy to safely access the high capacity of lithium metal anodes. However, most SSEs with practical ionic conductivity are chemically unstable in contact with lithium metal, which is detrimental to battery performance. Lithium aluminum germanium phosphate (LAGP) is an SSE with high ionic conductivity (10(-4)-10(-3) S cm(-1)) and good environmental stability, but it forms an amorphous interphase region that continuously grows in contact with Li, leading to chemo-mechanical failure within solid-state batteries. Here, we find that thin (similar to 30 nm) chromium interlayers deposited between the lithium electrode and LAGP extend cycle life to over 1000 h at moderate current densities (0.1-0.2 mA cm(-2)), compared to similar to 30 h without protection. This significantly improved stability occurs because the metallic interlayer alters the trajectory of interphase formation and the nature of the electrochemical reaction at the interface. This work shows the promise of interface engineering for a variety of SSE materials within solid-state batteries, while emphasizing the necessity of understanding how protection layers affect dynamic evolution of interfaces. (C) The Author(s) 2019. Published by ECS.
引用
收藏
页数:7
相关论文
共 58 条
[1]   Stability of Electrodeposition at Solid-Solid Interfaces and Implications for Metal Anodes [J].
Ahmad, Zeeshan ;
Viswanathan, Venkatasubramanian .
PHYSICAL REVIEW LETTERS, 2017, 119 (05)
[2]   IONIC-CONDUCTIVITY OF SOLID ELECTROLYTES BASED ON LITHIUM TITANIUM PHOSPHATE [J].
AONO, H ;
SUGIMOTO, E ;
SADAOKA, Y ;
IMANAKA, N ;
ADACHI, G .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1990, 137 (04) :1023-1027
[3]   Toward an Atomistic Understanding of Solid-State Electrochemical Interfaces for Energy Storage [J].
Augustyn, Veronica ;
McDowell, Matthew T. ;
Vojvodic, Aleksandra .
JOULE, 2018, 2 (11) :2189-2193
[4]  
Bhattacharyya R, 2010, NAT MATER, V9, P504, DOI [10.1038/NMAT2764, 10.1038/nmat2764]
[5]   LAGPILi Interface Modification through a Wetted Polypropylene Interlayer for Solid State Li-Ion and Li-S batteries [J].
Bosubahu, Dasari ;
Sivaraj, Jeevanantham ;
Sampathkumar, Ramakumar ;
Ramesha, Kannadka .
ACS APPLIED ENERGY MATERIALS, 2019, 2 (06) :4118-4125
[6]   Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes [J].
Chen, Kuan-Hung ;
Wood, Kevin N. ;
Kazyak, Eric ;
LePage, William S. ;
Davis, Andrew L. ;
Sanchez, Adrian J. ;
Dasgupta, Neil P. .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (23) :11671-11681
[7]   Stabilizing Solid Electrolyte-Anode Interface in Li-Metal Batteries by Boron Nitride-Based Nanocomposite Coating [J].
Cheng, Qian ;
Li, Aijun ;
Li, Na ;
Li, Shuang ;
Zangiabadi, Amirali ;
Li, Tai-De ;
Huang, Wenlong ;
Li, Alex Ceng ;
Jin, Tianwei ;
Song, Qingquan ;
Xu, Weiheng ;
Ni, Nan ;
Zhai, Haowei ;
Dontigny, Martin ;
Zaghib, Karim ;
Chuan, Xiuyun ;
Su, Dong ;
Yan, Kai ;
Yang, Yuan .
JOULE, 2019, 3 (06) :1510-1522
[8]   Mechanical and Thermal Failure Induced by Contact between a Li1.5Al0.5Ge1.5(PO4)3 Solid Electrolyte and Li Metal in an All Solid-State Li Cell [J].
Chung, Habin ;
Kang, Byoungwoo .
CHEMISTRY OF MATERIALS, 2017, 29 (20) :8611-8619
[9]   Operando Synchrotron Measurement of Strain Evolution in Individual Alloying Anode Particles within Lithium Batteries [J].
Cortes, Francisco Javier Quintero ;
Boebinger, Matthew G. ;
Xu, Michael ;
Ulvestad, Andrew ;
McDowell, Matthew T. .
ACS ENERGY LETTERS, 2018, 3 (02) :349-355
[10]   High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes [J].
Han, Fudong ;
Westover, Andrew S. ;
Yue, Jie ;
Fan, Xiulin ;
Wang, Fei ;
Chi, Miaofang ;
Leonard, Donovan N. ;
Dudney, Nancyj ;
Wang, Howard ;
Wang, Chunsheng .
NATURE ENERGY, 2019, 4 (03) :187-196