An AB alternating diblock single ion conducting polymer electrolyte membrane for all-solid-state lithium metal secondary batteries

被引:40
|
作者
Chen, Yazhou [1 ]
Tian, Yunsheng [1 ]
Li, Zhong [1 ]
Zhang, Nan [1 ]
Zeng, Danli [1 ]
Xu, Guodong [1 ]
Zhang, Yunfeng [1 ]
Sun, Yubao [1 ]
Ke, Hanzhong [1 ]
Cheng, Hansong [1 ]
机构
[1] China Univ Geosci Wuhan, Fac Mat Sci & Chem, Sustainable Energy Lab, 388 Lumo RD, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Solid polymer electrolyte membrane; Single ion conductor; Phase transition temperature; Lithium metal secondary batteries; ELECTROCHEMICAL PROPERTIES; COPOLYMER ELECTROLYTES; COMPOSITE ELECTROLYTE; TRANSFERENCE NUMBERS; POLY(ARYLENE ETHER); CONSTRUCTION; COMPLEXES; TRANSPORT; SUPERIOR;
D O I
10.1016/j.memsci.2018.09.013
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Lithium 4,4'-difluorobenzene sulfonyl imide is copolymerized with polyethylene glycol (PEG, M-w = 200, 400, 600, 800 and 1000) to synthesize a series of AB alternating diblock copolymer electrolytes (ADCE-1, 2, 3, 4, 5) for reducing the crystallinity of solid-state single ion conducing materials for applications in all-solid-state lithium metal secondary batteries. The free-standing film of ADCE-5 with the highest [EO]/[Li+] ratio (23.7:1) is found to display the lowest glass transition temperature (T-g) and the highest ionic conductivities of 6.61 x 10(-6) S cm(-1) at 30 degrees C and 2.24 x 10(-4) S cm(-1) at 100 degrees C. The alternating architecture of the polymer effectively prevents the polymer from phase separation originated from aggregation of the ionic groups as well as the ethylene oxide groups. As a result, segment motion may take place readily in the amorphous region at low temperature. Subsequently, a piece of glass fiber mat reinforced composite polymer electrolyte film is prepared for practical battery tests. The fabricated all-solid-state single ion conducting polymeric lithium metal secondary battery is able to work at a temperature as low as 40 degrees C with stable cycling performance. The battery delivers 102 mA h g(-1) at 0.1 C and is stabilized at 94 mA h g(-1) after 200 cycles.
引用
收藏
页码:181 / 189
页数:9
相关论文
共 50 条
  • [21] Solid Polymer Electrolyte Based on Polymerized Ionic Liquid for High Performance All-Solid-State Lithium-Ion Batteries
    Ma, Furui
    Zhang, Zengqi
    Yan, Wenchao
    Ma, Xiaodi
    Sun, Deye
    Jin, Yongcheng
    Chen, Xiaochun
    He, Kuang
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (05): : 4675 - 4683
  • [22] Lithium nitridonickelate as anode coupled with argyrodite electrolyte for all-solid-state lithium-ion batteries
    Qu, Yaxin
    Mateos, Mickael
    Emery, Nicolas
    Cuevas, Fermin
    Mercier, Dimitri
    Zanna, Sandrine
    Agustin, Rios de Anda
    Meziani, Narimane
    Zhang, Junxian
    JOURNAL OF ENERGY STORAGE, 2024, 102
  • [23] Recent progress of composite solid polymer electrolytes for all-solid-state lithium metal batteries
    Yu, Qingjiang
    Jiang, Kecheng
    Yu, Cuiling
    Chen, Xianjin
    Zhang, Chuanjian
    Yao, Yi
    Jiang, Bin
    Long, Huijin
    CHINESE CHEMICAL LETTERS, 2021, 32 (09) : 2659 - 2678
  • [24] High ion conductivity based on a polyurethane composite solid electrolyte for all-solid-state lithium batteries
    Cui, Peng
    Zhang, Qi
    Sun, Chun
    Gu, Jing
    Shu, Mengxin
    Gao, Congqiang
    Zhang, Qing
    Wei, Wei
    RSC ADVANCES, 2022, 12 (07) : 3828 - 3837
  • [25] Formation of Stable Interphase of Polymer-in-Salt Electrolyte in All-Solid-State Lithium Batteries
    Gao, Hongcai
    Grundish, Nicholas S.
    Zhao, Yongjie
    Zhou, Aijun
    Goodenough, John B.
    ENERGY MATERIAL ADVANCES, 2021, 2021
  • [26] On the feasibility of all-solid-state batteries with LLZO as a single electrolyte
    Kravchyk, Kostiantyn, V
    Karabay, Dogan Tarik
    Kovalenko, Maksym, V
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [27] The interfacial behaviours of all-solid-state lithium ion batteries
    Bai, Lixiong
    Xue, Wendong
    Li, Yan
    Liu, Xiaoguang
    Li, Yong
    Sun, Jialin
    CERAMICS INTERNATIONAL, 2018, 44 (07) : 7319 - 7328
  • [28] Lithium Superionic Conducting Oxysulfide Solid Electrolyte with Excellent Stability against Lithium Metal for All-Solid-State Cells
    Tao, Yicheng
    Chen, Shaojie
    Liu, Deng
    Peng, Gang
    Yao, Xiayin
    Xu, Xiaoxiong
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (02) : A96 - A101
  • [29] Semi-interpenetrating-network all-solid-state polymer electrolyte with liquid crystal constructing efficient ion transport channels for flexible solid lithium-metal batteries
    Zeng, Qinghui
    Lu, Yu
    Chen, Pingping
    Li, Zhenfeng
    Wen, Xin
    Wen, Wen
    Liu, Yu
    Zhang, Shuping
    Zhao, Hailei
    Zhou, Henghui
    Wang, Zhi-xiang
    Zhang, Liaoyun
    JOURNAL OF ENERGY CHEMISTRY, 2022, 67 : 157 - 167
  • [30] All-Solid-State Lithium-Organic Batteries Comprising Single-Ion Polymer Nanoparticle Electrolytes
    Kim, Boram
    Kang, Haneol
    Kim, Kyoungwook
    Wang, Rui-Yang
    Park, Moon Jeong
    CHEMSUSCHEM, 2020, 13 (09) : 2271 - 2279