CONVERGENT SEMIDEFINITE PROGRAMMING RELAXATIONS FOR GLOBAL BILEVEL POLYNOMIAL OPTIMIZATION PROBLEMS

被引:18
|
作者
Jeyakumar, V. [1 ,2 ]
Lasserre, J. B. [2 ,3 ]
Li, G. [1 ]
Pham, T. S. [4 ,5 ,6 ]
机构
[1] Univ New S Wales, Dept Appl Math, Sydney, NSW 2052, Australia
[2] LAAS CNRS, F-31400 Toulouse, France
[3] LAAS, Inst Math, F-31400 Toulouse, France
[4] Duy Tan Univ, Inst Res & Dev, K7-25, Quang Trung, Danang, Vietnam
[5] Univ Dalat, Dept Math, 1 Phu Dong Thien Vuong, Da Lat, Vietnam
[6] Univ New S Wales, Dept Appl Math, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会; 欧洲研究理事会;
关键词
bilevel programming; global optimization; polynomial optimization; semidefinite programming hierarchies; SETS; SYSTEMS;
D O I
10.1137/15M1017922
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a bilevel polynomial optimization problem where the objective and the constraint functions of both the upper-and the lower-level problems are polynomials. We present methods for finding its global minimizers and global minimum using a sequence of semidefinite programming (SDP) relaxations and provide convergence results for the methods. Our scheme for problems with a convex lower-level problem involves solving a transformed equivalent single-level problem by a sequence of SDP relaxations, whereas our approach for general problems involving a nonconvex polynomial lower-level problem solves a sequence of approximation problems via another sequence of SDP relaxations.
引用
收藏
页码:753 / 780
页数:28
相关论文
共 50 条
  • [41] Enhancing RLT-based relaxations for polynomial programming problems via a new class of υ-semidefinite cuts
    Sherali, Hanif D.
    Dalkiran, Evrim
    Desai, Jitamitra
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2012, 52 (02) : 483 - 506
  • [42] INVARIANCE UNDER AFFINE TRANSFORMATION IN SEMIDEFINITE PROGRAMMING RELAXATION FOR POLYNOMIAL OPTIMIZATION PROBLEMS
    Waki, Hayato
    Muramatsu, Masakazu
    Kojima, Masakazu
    PACIFIC JOURNAL OF OPTIMIZATION, 2009, 5 (02): : 297 - 312
  • [43] OPTIMALITY CONDITIONS FOR SPECIAL SEMIDEFINITE BILEVEL OPTIMIZATION PROBLEMS
    Dempe, Stephan
    Kue, Floriane Mefo
    Mehlitz, Patrick
    SIAM JOURNAL ON OPTIMIZATION, 2018, 28 (02) : 1564 - 1587
  • [44] Convergent SDP-relaxations in polynomial optimization with sparsity
    Lasserre, Jean B.
    SIAM JOURNAL ON OPTIMIZATION, 2006, 17 (03) : 822 - 843
  • [45] An approximate approach of global optimization for polynomial programming problems
    Li, HL
    Chang, CT
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1998, 107 (03) : 625 - 632
  • [46] Convergent SDP-relaxations for polynomial optimization with sparsity
    Lasserre, Jean B.
    MATHEMATICAL SOFTWARE-ICMS 2006, PROCEEDINGS, 2006, 4151 : 263 - 272
  • [47] New semidefinite relaxations for a class of complex quadratic programming problems
    Xu, Yingzhe
    Lu, Cheng
    Deng, Zhibin
    Liu, Ya-Feng
    JOURNAL OF GLOBAL OPTIMIZATION, 2023, 87 (01) : 255 - 275
  • [48] Exact SDP relaxations for classes of nonlinear semidefinite programming problems
    Jeyakumar, V.
    Li, G.
    OPERATIONS RESEARCH LETTERS, 2012, 40 (06) : 529 - 536
  • [49] New semidefinite relaxations for a class of complex quadratic programming problems
    Yingzhe Xu
    Cheng Lu
    Zhibin Deng
    Ya-Feng Liu
    Journal of Global Optimization, 2023, 87 : 255 - 275
  • [50] Semidefinite programming relaxations for graph coloring and maximal clique problems
    Igor Dukanovic
    Franz Rendl
    Mathematical Programming, 2007, 109 : 345 - 365