CONVERGENT SEMIDEFINITE PROGRAMMING RELAXATIONS FOR GLOBAL BILEVEL POLYNOMIAL OPTIMIZATION PROBLEMS

被引:18
|
作者
Jeyakumar, V. [1 ,2 ]
Lasserre, J. B. [2 ,3 ]
Li, G. [1 ]
Pham, T. S. [4 ,5 ,6 ]
机构
[1] Univ New S Wales, Dept Appl Math, Sydney, NSW 2052, Australia
[2] LAAS CNRS, F-31400 Toulouse, France
[3] LAAS, Inst Math, F-31400 Toulouse, France
[4] Duy Tan Univ, Inst Res & Dev, K7-25, Quang Trung, Danang, Vietnam
[5] Univ Dalat, Dept Math, 1 Phu Dong Thien Vuong, Da Lat, Vietnam
[6] Univ New S Wales, Dept Appl Math, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会; 欧洲研究理事会;
关键词
bilevel programming; global optimization; polynomial optimization; semidefinite programming hierarchies; SETS; SYSTEMS;
D O I
10.1137/15M1017922
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a bilevel polynomial optimization problem where the objective and the constraint functions of both the upper-and the lower-level problems are polynomials. We present methods for finding its global minimizers and global minimum using a sequence of semidefinite programming (SDP) relaxations and provide convergence results for the methods. Our scheme for problems with a convex lower-level problem involves solving a transformed equivalent single-level problem by a sequence of SDP relaxations, whereas our approach for general problems involving a nonconvex polynomial lower-level problem solves a sequence of approximation problems via another sequence of SDP relaxations.
引用
收藏
页码:753 / 780
页数:28
相关论文
共 50 条
  • [11] A note on semidefinite programming relaxations for polynomial optimization over a single sphere
    Hu Jiang
    Jiang Bo
    Liu Xin
    Wen ZaiWen
    SCIENCE CHINA-MATHEMATICS, 2016, 59 (08) : 1543 - 1560
  • [12] Generalized Semi-infinite Polynomial Optimization and Semidefinite Programming Relaxations
    Jiao, Liguo
    Lee, Jae Hyoung
    Pham, Tien-Son
    ACTA MATHEMATICA VIETNAMICA, 2024, 49 (03) : 441 - 457
  • [13] Multi-objective convex polynomial optimization and semidefinite programming relaxations
    Jae Hyoung Lee
    Nithirat Sisarat
    Liguo Jiao
    Journal of Global Optimization, 2021, 80 : 117 - 138
  • [14] Multi-objective convex polynomial optimization and semidefinite programming relaxations
    Lee, Jae Hyoung
    Sisarat, Nithirat
    Jiao, Liguo
    JOURNAL OF GLOBAL OPTIMIZATION, 2021, 80 (01) : 117 - 138
  • [15] A note on semidefinite programming relaxations for polynomial optimization over a single sphere
    Jiang Hu
    Bo Jiang
    Xin Liu
    ZaiWen Wen
    Science China Mathematics, 2016, 59 : 1543 - 1560
  • [16] A convergent hierarchy of SDP relaxations for a class of hard robust global polynomial optimization problems
    Chieu, N. H.
    Jeyakumar, V.
    Li, G.
    OPERATIONS RESEARCH LETTERS, 2017, 45 (04) : 325 - 333
  • [17] Semidefinite programming relaxations for semialgebraic problems
    Parrilo, PA
    MATHEMATICAL PROGRAMMING, 2003, 96 (02) : 293 - 320
  • [18] Semidefinite programming relaxations for semialgebraic problems
    Pablo A. Parrilo
    Mathematical Programming, 2003, 96 : 293 - 320
  • [19] Global Optimization of Nonlinear Bilevel Programming Problems
    Zeynep H. Gümüş
    Christodoulos A. Floudas
    Journal of Global Optimization, 2001, 20 : 1 - 31
  • [20] Semidefinite programming vs. LP relaxations for polynomial programming
    Lasserre, JB
    MATHEMATICS OF OPERATIONS RESEARCH, 2002, 27 (02) : 347 - 360