CONVERGENT SEMIDEFINITE PROGRAMMING RELAXATIONS FOR GLOBAL BILEVEL POLYNOMIAL OPTIMIZATION PROBLEMS

被引:19
作者
Jeyakumar, V. [1 ,2 ]
Lasserre, J. B. [2 ,3 ]
Li, G. [1 ]
Pham, T. S. [4 ,5 ,6 ]
机构
[1] Univ New S Wales, Dept Appl Math, Sydney, NSW 2052, Australia
[2] LAAS CNRS, F-31400 Toulouse, France
[3] LAAS, Inst Math, F-31400 Toulouse, France
[4] Duy Tan Univ, Inst Res & Dev, K7-25, Quang Trung, Danang, Vietnam
[5] Univ Dalat, Dept Math, 1 Phu Dong Thien Vuong, Da Lat, Vietnam
[6] Univ New S Wales, Dept Appl Math, Sydney, NSW 2052, Australia
基金
欧洲研究理事会; 澳大利亚研究理事会;
关键词
bilevel programming; global optimization; polynomial optimization; semidefinite programming hierarchies; SETS; SYSTEMS;
D O I
10.1137/15M1017922
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a bilevel polynomial optimization problem where the objective and the constraint functions of both the upper-and the lower-level problems are polynomials. We present methods for finding its global minimizers and global minimum using a sequence of semidefinite programming (SDP) relaxations and provide convergence results for the methods. Our scheme for problems with a convex lower-level problem involves solving a transformed equivalent single-level problem by a sequence of SDP relaxations, whereas our approach for general problems involving a nonconvex polynomial lower-level problem solves a sequence of approximation problems via another sequence of SDP relaxations.
引用
收藏
页码:753 / 780
页数:28
相关论文
共 45 条
[11]   Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints [J].
Dempe, S .
OPTIMIZATION, 2003, 52 (03) :333-359
[12]  
Dempe S., 2002, Foundations of bilevel programming
[13]  
DiBenedetto E., 2002, Real Analysis
[14]  
Dinh N, 2014, TOP, V22, P1, DOI 10.1007/s11750-014-0319-y
[15]  
FLOUDAS C. A., 1999, NONCONVEX OPTIM APPL, V33
[16]  
Gfrerer H., 1987, Parametric Optimization and Related Topics, P113
[17]   Global optimization of nonlinear bilevel programming problems [J].
Gümüs, ZH ;
Floudas, CA .
JOURNAL OF GLOBAL OPTIMIZATION, 2001, 20 (01) :1-31
[18]   GloptiPoly 3: moments, optimization and semidefinite programming [J].
Henrion, Didier ;
Lasserre, Jean-Bernard ;
Lofberg, Johan .
OPTIMIZATION METHODS & SOFTWARE, 2009, 24 (4-5) :761-779
[19]   Semidefinite programming relaxation methods for global optimization problems with sparse polynomials and unbounded semialgebraic feasible sets [J].
Jeyakumar, V. ;
Kim, S. ;
Lee, G. M. ;
Li, G. .
JOURNAL OF GLOBAL OPTIMIZATION, 2016, 65 (02) :175-190
[20]   On Polynomial Optimization Over Non-compact Semi-algebraic Sets [J].
Jeyakumar, V. ;
Lasserre, J. B. ;
Li, G. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2014, 163 (03) :707-718