CONVERGENT SEMIDEFINITE PROGRAMMING RELAXATIONS FOR GLOBAL BILEVEL POLYNOMIAL OPTIMIZATION PROBLEMS

被引:19
作者
Jeyakumar, V. [1 ,2 ]
Lasserre, J. B. [2 ,3 ]
Li, G. [1 ]
Pham, T. S. [4 ,5 ,6 ]
机构
[1] Univ New S Wales, Dept Appl Math, Sydney, NSW 2052, Australia
[2] LAAS CNRS, F-31400 Toulouse, France
[3] LAAS, Inst Math, F-31400 Toulouse, France
[4] Duy Tan Univ, Inst Res & Dev, K7-25, Quang Trung, Danang, Vietnam
[5] Univ Dalat, Dept Math, 1 Phu Dong Thien Vuong, Da Lat, Vietnam
[6] Univ New S Wales, Dept Appl Math, Sydney, NSW 2052, Australia
基金
欧洲研究理事会; 澳大利亚研究理事会;
关键词
bilevel programming; global optimization; polynomial optimization; semidefinite programming hierarchies; SETS; SYSTEMS;
D O I
10.1137/15M1017922
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a bilevel polynomial optimization problem where the objective and the constraint functions of both the upper-and the lower-level problems are polynomials. We present methods for finding its global minimizers and global minimum using a sequence of semidefinite programming (SDP) relaxations and provide convergence results for the methods. Our scheme for problems with a convex lower-level problem involves solving a transformed equivalent single-level problem by a sequence of SDP relaxations, whereas our approach for general problems involving a nonconvex polynomial lower-level problem solves a sequence of approximation problems via another sequence of SDP relaxations.
引用
收藏
页码:753 / 780
页数:28
相关论文
共 45 条
[1]  
[Anonymous], 1998, Practical bi-level optimization
[2]  
Ash R., 1972, Real Analysis and Probability: Probability and Mathematical Statistics: a Series of Monographs and Textbooks, DOI DOI 10.1016/C2013-0-06164-6
[3]   Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods [J].
Attouch, Hedy ;
Bolte, Jerome ;
Svaiter, Benar Fux .
MATHEMATICAL PROGRAMMING, 2013, 137 (1-2) :91-129
[4]   Links between linear bilevel and mixed 0-1 programming problems [J].
Audet, C ;
Hansen, P ;
Jaumard, B ;
Savard, G .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1997, 93 (02) :273-300
[5]  
BENEDETTO R., 1991, REAL ALGEBRAIC SEMIA
[6]  
BIERSTONE E, 1988, PUBL MATH-PARIS, P5
[7]  
Clarke F. H., 1983, OPTIMIZATION NONSMOO
[8]   An overview of bilevel optimization [J].
Colson, Benoit ;
Marcotte, Patrice ;
Savard, Gilles .
ANNALS OF OPERATIONS RESEARCH, 2007, 153 (01) :235-256
[9]  
Coste M., 1998, ERGEB MATH GRENZGEB, V36
[10]   Is bilevel programming a special case of a mathematical program with complementarity constraints? [J].
Dempe, S. ;
Dutta, J. .
MATHEMATICAL PROGRAMMING, 2012, 131 (1-2) :37-48