Affinity Tools for Decrypting The Ubiquitin Chains

被引:0
作者
Li Zhen
Zhao Bo [1 ]
机构
[1] Shanghai Jiao Tong Univ, Minist Educ, Engn Res Ctr Cell & Therapeut Antibody, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
ubiquitin chains; ubiquitin; ubiquitination; ubiquitin linkage-specific antibodies; antibody library technique; MASS-SPECTROMETRY; CHEMICAL-SYNTHESIS; POLYUBIQUITIN; PROTEINS; SPECIFICITY; PHOSPHORYLATION; UBIQUITYLATION; LOCALIZATION; DEGRADATION; ACTIVATION;
D O I
10.16476/j.pibb.2019.0040
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Protein ubiquitination is one of the most versatile post-translational modifications, and is widely involved in multiple cellular processes including protein degradation, cellular signaling transduction and DNA damage responses. The eight sites (M1, K6, K11, K27, K29, K33, K48, K63) of ubiquitin help to form individual complex chains by being attached to C-terminus of another ubiquitin molecule. In addition, these different ubiquitin chains play distinct biological functions. However, functions of most ubiquitin chain types are poorly understood, due to the lack of tools that enable ubiquitin linkage-specific detection. Affinity reagents such as ubiquitin linkage-specific antibodies are powerful tools for the studies of the ubiquitin chains. This review focuses on the development and applications of several ubiquitin linkage-specific antibodies, as well as other specific affinity tools, which can be used for identifying of ubiquitin chains such as Affimer and UBD-based fluorescent sensors proteins. This review also briefly introduces the methods of obtaining antigens for the discovery of these ubiquitin linkage-specific antibodies.
引用
收藏
页码:845 / 857
页数:13
相关论文
共 83 条
[21]   Expanding the ubiquitin code through post-translational modification [J].
Herhaus, Lina ;
Dikic, Ivan .
EMBO REPORTS, 2015, 16 (09) :1071-1083
[22]   The ubiquitin system [J].
Hershko, A ;
Ciechanover, A .
ANNUAL REVIEW OF BIOCHEMISTRY, 1998, 67 :425-479
[23]   Ubiquitin-binding domains [J].
Hicke, L ;
Schubert, HL ;
Hill, CP .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2005, 6 (08) :610-621
[24]   The use of ubiquitin lysine mutants to characterize E2-E3 linkage specificity: Mass spectrometry offers a cautionary "tail" [J].
Hong, Jenny H. ;
Ng, Deborah ;
Srikumar, Tharan ;
Raught, Brian .
PROTEOMICS, 2015, 15 (17) :2910-2915
[25]   Deubiquitinase-based analysis of ubiquitin chain architecture using Ubiquitin Chain Restriction (UbiCRest) [J].
Hospenthal, Manuela K. ;
Mevissen, Tycho E. T. ;
Komander, David .
NATURE PROTOCOLS, 2015, 10 (02) :349-361
[26]  
Hughes D J, 2017, SCI SIGNALING, V10
[27]   Ubiquitin-Binding Proteins: Decoders of Ubiquitin-Mediated Cellular Functions [J].
Husnjak, Koraljka ;
Dikic, Ivan .
ANNUAL REVIEW OF BIOCHEMISTRY, VOL 81, 2012, 81 :291-322
[28]   Linear ubiquitin chains: NF-κB signalling, cell death and beyond [J].
Iwai, Kazuhiro ;
Fujita, Hiroaki ;
Sasaki, Yoshiteru .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2014, 15 (08) :503-508
[29]   PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity [J].
Kane, Lesley A. ;
Lazarou, Michael ;
Fogel, Adam I. ;
Li, Yan ;
Yamano, Koji ;
Sarraf, Shireen A. ;
Banerjee, Soojay ;
Youle, Richard J. .
JOURNAL OF CELL BIOLOGY, 2014, 205 (02) :143-153
[30]   Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65 [J].
Kazlauskaite, Agne ;
Kondapalli, Chandana ;
Gourlay, Robert ;
Campbell, David G. ;
Ritorto, Maria Stella ;
Hofmann, Kay ;
Alessi, Dario R. ;
Knebel, Axel ;
Trost, Matthias ;
Muqit, Miratul M. K. .
BIOCHEMICAL JOURNAL, 2014, 460 :127-139