Comparative properties of three metrics in the space of compact convex sets

被引:22
作者
Diamond, P
Kloeden, P
Rubinov, A
Vladimirov, A
机构
[1] Univ Queensland, Dept Math, St Lucia, Qld 4072, Australia
[2] Univ Ballarat, Sch Informat Technol & Math Sci, Ballarat, Vic 3353, Australia
[3] Univ Frankfurt, Fachbereich Math, D-60054 Frankfurt, Germany
[4] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow, Russia
来源
SET-VALUED ANALYSIS | 1997年 / 5卷 / 03期
基金
澳大利亚研究理事会;
关键词
space of convex sets; Demyanov difference; Bartels-Pallaschke metric; derivative of set-valued function; convex fuzzy set;
D O I
10.1023/A:1008667909101
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Along with the Hausdorff metric, we consider two other metrics on the space of convex sets, namely, the metric induced by the Demyanov difference of convex sets and the Bartels-Pallaschke metric. We describe the hierarchy of these three metrics and of the corresponding norms in the space of differences of sublinear functions. The completeness of corresponding metric spaces is demonstrated. Conditions of differentiability of convex-valued maps of one variable with respect to these metrics are proved for some special cases. Applications to the theory of convex fuzzy sets are given.
引用
收藏
页码:267 / 289
页数:23
相关论文
共 29 条
[11]  
Diamond P., 1994, Metric Spaces of Fuzzy Sets: Theory and Applications
[12]  
Edwards R.E., 1965, Functional Analysis
[13]  
HIRIARTURRUTY JB, 1985, LECT NOTES EC MATH S, V255
[14]  
Hukuhara M., 1967, Funkcial. Ekvac, V10, P205
[15]   COMPACT SUPPORTED ENDOGRAPHS AND FUZZY-SETS [J].
KLOEDEN, PE .
FUZZY SETS AND SYSTEMS, 1980, 4 (02) :193-201
[16]  
MINCHENKO LI, 1993, SET VALUED ANAL PERT
[17]   CONTINUITY OF YOUNG-FENCHEL TRANSFORM [J].
MOSCO, U .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1971, 35 (03) :518-&
[18]   CONVERGENCE OF CONVEX SETS AND OF SOLUTIONS OF VARIATIONAL INEQUALITIES [J].
MOSCO, U .
ADVANCES IN MATHEMATICS, 1969, 3 (04) :510-&
[19]  
PECHERSKAYA NA, 1986, MATH PROGRAM STUD, V29, P145, DOI 10.1007/BFb0121144
[20]   ON QUASI-CONVEX DUALITY [J].
PENOT, JP ;
VOLLE, M .
MATHEMATICS OF OPERATIONS RESEARCH, 1990, 15 (04) :597-625