Schrodinger Harmonic Functions with Morrey Traces on Dirichlet Metric Measure Spaces

被引:0
作者
Shen, Tianjun [1 ]
Li, Bo [2 ]
机构
[1] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
[2] Jiaxing Univ, Coll Data Sci, Jiaxing 314001, Peoples R China
基金
中国国家自然科学基金;
关键词
Schrodinger equation; Morrey space; Dirichlet problem; metric measure space; POISSON INTEGRALS; CARLESON MEASURES; HEAT KERNELS; RIESZ TRANSFORMS; UPPER-BOUNDS; OPERATORS; BMO; EQUATIONS;
D O I
10.3390/math10071112
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Assume that (X,d,mu) is a metric measure space that satisfies a Q-doubling condition with Q > 1 and supports an L-2-Poincare inequality. Let L be a nonnegative operator generalized by a Dirichlet form E and V be a Muckenhoupt weight belonging to a reverse Holder class RHq(X) for some q >= (Q + 1)/2. In this paper, we consider the Dirichlet problem for the Schrodinger equation -partial derivative(2)(t)u + Lu + Vu = 0 on the upper half-space X x R+, which has f as its the boundary value on X. We show that a solution u of the Schrodinger equation satisfies the Carleson type condition if and only if there exists a square Morrey function f such that u can be expressed by the Poisson integral of f. This extends the results of Song-Tian-Yan [Acta Math. Sin. (Engl. Ser.) 34 (2018), 787-800] from the Euclidean space R-Q to the metric measure space X and improves the reverse Holder index from q >= Q to q >= (Q + 1)/2.
引用
收藏
页数:22
相关论文
共 45 条
  • [1] Auscher P, 2015, ANN SCI ECOLE NORM S, V48, P951
  • [2] DIRICHLET SPACES
    BEURLING, A
    DENY, J
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1959, 45 (02) : 208 - 215
  • [3] A Saint-Venant type principle for dirichlet forms on discontinuous media.
    Biroli, M
    Mosco, U
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 1995, 169 : 125 - 181
  • [4] BOUNDEDNESS OF SECOND ORDER RIESZ TRANSFORMS ASSOCIATED TO SCHRODINGER OPERATORS ON MUSIELAK-ORLICZ-HARDY SPACES
    Cao, Jun
    Chang, Der-Chen
    Yang, Dachun
    Yang, Sibei
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (04) : 1435 - 1463
  • [5] Chen P, 2020, MATH ANN, V378, P667, DOI 10.1007/s00208-020-02008-2
  • [6] Carleson measures, BMO spaces and balayages associated to Schrodinger operators
    Chen Peng
    Duong, Xuan Thinh
    Li Ji
    Song Liang
    Yan LiXin
    [J]. SCIENCE CHINA-MATHEMATICS, 2017, 60 (11) : 2077 - 2092
  • [7] Gradient estimates for heat kernels and harmonic functions
    Coulhon, Thierry
    Jiang, Renjin
    Koskela, Pekka
    Sikora, Adam
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 278 (08)
  • [8] CHARACTERIZATION OF TEMPERATURES WITH INITIAL DATA IN BMO
    FABES, EB
    NERI, U
    [J]. DUKE MATHEMATICAL JOURNAL, 1975, 42 (04) : 725 - 734
  • [9] SPACES OF HARMONIC-FUNCTIONS REPRESENTABLE BY POISSON INTEGRALS OF FUNCTIONS IN BMO AND LP,LAMBDA
    FABES, EB
    JOHNSON, RL
    NERI, U
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1976, 25 (02) : 159 - 170
  • [10] Fefferman C, 1972, ACTA MATH-DJURSHOLM, V129, P137, DOI 10.1007/BF02392215