Two packages each, containing 10 wires per package, of different batches of 25 different types of orthodontic archwires made of super-elastic nickel-titanium alloys measuring 0.41 x 0.56 mm(2), were investigated. The wires were characterized by obtaining the following measurements at an ambient temperature of 37degrees: a three-point bending test with the supporting points spaced 10 mm apart, and determination of the torque/bending angle curves using a pure bending test. The force/deflection curves provided the parameters characterizing the super-elastic unloading plateau: average force, slope and endpoint. From the torque/bending angle curves, the parameters average torque, plateau endpoint and the elasticity parameters were determined. Average force (0.8-4.5 N), endpoint (0.2-0.9 mm) and the slope of the unloading plateau (0.2-2.1 N/mm) of the three-point bending test clearly differed for individual wires. Significant differences were also seen for average torque (1.5-11.5 Nmm), unloading plateau endpoint (2.7-20.0 degrees) and elasticity parameters epsilon(4), E-4, E-5 and E-6 in the pure bending test. Individual batches showed only minor differences. The results permit the conclusion to be drawn that super-elasticity is applicable to only a small portion of the wires examined. Although other wires showed super-elastic behaviour, the unloading plateaus has a force level of up to 6 N, and cannot be recommended for orthodontic application. The super-elastic plateau is often of use only for deflections greater than 1.5 mm. The use of super-elastic archwires made of nickel-titanium alloys makes sense only when the elastic properties of the respective wires are known. This makes the provision by the manufacturer of relevant data on the elastic properties of wires a necessity.