On parameter estimation of stochastic delay differential equations with guaranteed accuracy by noisy observations

被引:0
|
作者
Kuechler, Uwe
Vasil'iev, Vyacheslav A.
机构
[1] Humboldt Univ, Inst Math, D-10099 Berlin, Germany
[2] Tomsk VV Kuibyshev State Univ, Dept Appl Math & Cybernet, Tomsk 634050, Russia
基金
俄罗斯基础研究基金会;
关键词
stochastic delay differential equations; sequential analysis; noisy observations; mean square accuracy;
D O I
10.1016/j.jspi.2006.12.001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let (X (t), t >= - 1) and (Y(t), t >= 0) be stochastic processes satisfying dX(t) = aX(t) dt + bX(t - 1) dt + dW(t) and dY(t) = X(t) dt + dV(t), respectively. Here (W (t), t >= 0) and (V (t), t >= 0) are independent standard Wiener processes and v = (a, b)' is assumed to be an unknown parameter from some subset Theta of R-2. The aim here is to estimate the parameter V based on continuous observation of (Y(t), t >= 0). Sequential estimation plans for V with preassigned mean square accuracy E are constructed using the so-called correlation method. The limit behaviour of the duration of the estimation procedure is studied if C tends to zero. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:3007 / 3023
页数:17
相关论文
共 50 条
  • [41] Accuracy Enhancement of Parameter Estimation for Noisy NMR Spectra
    Kang, S.
    Kim, K.
    Fiat, D.
    APPLIED MAGNETIC RESONANCE, 1991, 2 (04) : 695 - 714
  • [42] Guaranteed estimation of solutions to Helmholtz problems from pointwise noisy observations
    Podlipenko, Y. K.
    Nakonechny, A. G.
    Shestopalov, Y., V
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON DAYS ON DIFFRACTION 2016 (DD), 2016, : 336 - 339
  • [43] Parameter Estimation in a System of Integro-Differential Equations With Time-Delay
    Kumar, Abhimanyu
    Saxena, Sahaj
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2023, 70 (11) : 4158 - 4160
  • [44] A DIFFERENCE EQUATION APPROACH TO PARAMETER-ESTIMATION FOR DIFFERENTIAL-DELAY EQUATIONS
    BURNS, JA
    HIRSCH, PD
    APPLIED MATHEMATICS AND COMPUTATION, 1980, 7 (04) : 281 - 311
  • [45] Bounded Error Parameter Estimation for Models Described by Ordinary and Delay Differential Equations
    Burns, John A.
    Childers, Adam F.
    MED: 2009 17TH MEDITERRANEAN CONFERENCE ON CONTROL & AUTOMATION, VOLS 1-3, 2009, : 193 - 198
  • [46] Small delay approximation of stochastic delay differential equations
    Guillouzic, S
    L'Heureux, I
    Longtin, A
    PHYSICAL REVIEW E, 1999, 59 (04): : 3970 - 3982
  • [47] Stackelberg stochastic differential game with asymmetric noisy observations
    Zheng, Yueyang
    Shi, Jingtao
    INTERNATIONAL JOURNAL OF CONTROL, 2022, 95 (09) : 2510 - 2530
  • [48] Minimax Rates for Nonparametric Drift Estimation in Affine Stochastic Delay Differential Equations
    Markus Reiß
    Statistical Inference for Stochastic Processes, 2002, 5 (2) : 131 - 152
  • [49] LEAST SQUARES ESTIMATION FOR DISTRIBUTION-DEPENDENT STOCHASTIC DIFFERENTIAL DELAY EQUATIONS
    Hu, Yanyan
    Xi, Fubao
    Zhu, Min
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2022, 21 (04) : 1505 - 1536
  • [50] Stochastic Taylor Methods for Stochastic Delay Differential Equations
    Rosli, Norhayati
    Bahar, Arifah
    Hoe, Yeak Su
    Rahman, Haliza Abdul
    MATEMATIKA, 2013, 29 (01) : 241 - 251