Stream Processing on GPUs Using Distributed Multimedia Middleware

被引:0
作者
Repplinger, Michael [1 ]
Slusallek, Philipp [1 ]
机构
[1] Univ Saarland, Comp Graph Lab, D-6600 Saarbrucken, Germany
来源
PARALLEL PROCESSING AND APPLIED MATHEMATICS, PT I | 2010年 / 6067卷
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Available GPUs provide increasingly more processing power especially for multimedia and digital signal processing. Despite the tremendous progress in hardware and thus processing power, there are and always will be applications that require using multiple GPUs either running inside the same machine or distributed in the network due to computational intensive processing algorithms. Existing solutions for developing applications for GPUs still require a lot of hand-optimization when using multiple GPUs inside the same machine and provide in general no support for using remote GPUs distributed in the network. In this paper we address tins problem and show that an open distributed multimedia middleware, like the Network-Integrated Multimedia Middleware (NMM), is able (1) to seamlessly integrate processing components using GPUs while completely hiding GPU specific issues from the application developer, (2) to transparently combine processing components using GPUs or CPUs, and (3) to transparently use local and remote GPUs for distributed processing.
引用
收藏
页码:429 / 438
页数:10
相关论文
共 12 条
  • [1] ALLUSSE Y, 2008, MM 08, P1089
  • [2] Infopipes: An abstraction for multimedia streaming
    Black, AP
    Huang, J
    Koster, R
    Walpole, J
    Pu, C
    [J]. MULTIMEDIA SYSTEMS, 2002, 8 (05) : 406 - 419
  • [3] EILEMANN S, 2007, 200706 IFI U ZUR DEP
  • [4] Fillinger A., 2008, IEEE INT S WORLD WIR
  • [5] Fung James., 2005, 2005 P 13 ANN ACM IN, P849, DOI DOI 10.1145/1101149.1101334
  • [6] HARTLEY DR, 2008, ICS 2008, P15
  • [7] Humphreys G, 2001, COMP GRAPH, P129, DOI 10.1145/383259.383272
  • [8] Humphreys G, 2002, ACM T GRAPHIC, V21, P693, DOI 10.1145/566570.566639
  • [9] LOHSE M, 2008, MM 2008, P1081
  • [10] NVIDIA, 2008, CUDA PROGR GUID 2 0