Overexpression of a peanut NAC gene, AhNAC4, confers enhanced drought tolerance in tobacco

被引:28
|
作者
Tang, G. Y. [1 ]
Shao, F. X. [2 ]
Xu, P. L. [1 ]
Shan, L. [1 ]
Liu, Z. J. [3 ]
机构
[1] Shandong Acad Agr Sci, Biotech Res Ctr, Shandong Prov Key Lab Crop Genet Improvement Ecol, Jinan 250100, Peoples R China
[2] Shandong Normal Univ, Sch Life Sci, Jinan 250358, Peoples R China
[3] Shandong Acad Agr Sci, Shandong Cotton Res Ctr, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
Arachis hypogaea; NAC transcription factor; transgenic tobacco; drought tolerance; TRANSCRIPTION FACTOR; MOLECULAR CHARACTERIZATION; FUNCTIONAL-ANALYSIS; GLYCINE-MAX; STRESS; EXPRESSION; PROTEIN; FAMILY; RESPONSES; DISTINCT;
D O I
10.1134/S1021443717040161
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
NAC is one of the most abundant plant-specific groups of transcription factors, which play important roles in plant growth and development regulation, as well as in biotic and abiotic stress responses. In the present study, a stress-responsive NAC gene, AhNAC4, was isolated from a cDNA library of peanut (Arachis hypogaea L.) immature seeds, and characterized for its role in drought tolerance. AhNAC4 shared high amino acid similarity with NAC proteins belonging to the ATAF subfamily. The expression analysis indicated that AhNAC4 was highly induced by drought, salinity and ABA treatments. Transient expression analysis showed the AhNAC4-GFP fusion protein was exclusively localized in the nucleus of onion epidermal cells. Transactivation assays in yeast cells demonstrated that AhNAC4 functioned as a transcription activator and its C-terminus contained the activation domain. Overexpression of AhNAC4 confers enhanced drought tolerance in transgenic tobacco plants. The improved drought tolerance was associated with more stomatal closure and higher water use efficiency. Collectively, our results indicated that AhNAC4 functions as an important regulator in response to drought stress.
引用
收藏
页码:525 / 535
页数:11
相关论文
共 50 条
  • [1] Overexpression of a peanut NAC gene, AhNAC4, confers enhanced drought tolerance in tobacco
    G. Y. Tang
    F. X. Shao
    P. L. Xu
    L. Shan
    Z. J. Liu
    Russian Journal of Plant Physiology, 2017, 64 : 525 - 535
  • [2] Overexpression of a Miscanthus lutarioriparius NAC gene MlNAC5 confers enhanced drought and cold tolerance in Arabidopsis
    Yang, Xuanwen
    Wang, Xiaoyu
    Ji, Lu
    Yi, Zili
    Fu, Chunxiang
    Ran, Jingcheng
    Hu, Ruibo
    Zhou, Gongke
    PLANT CELL REPORTS, 2015, 34 (06) : 943 - 958
  • [3] Overexpression of the wheat NAC transcription factor TaSNAC4-3A gene confers drought tolerance in transgenic Arabidopsis
    Mei, Fangming
    Chen, Bin
    Li, Fangfang
    Zhang, Yifang
    Kang, Zhensheng
    Wang, Xiaojing
    Mao, Hude
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2021, 160 : 37 - 50
  • [4] Overexpression of a Miscanthus lutarioriparius NAC gene MlNAC5 confers enhanced drought and cold tolerance in Arabidopsis
    Xuanwen Yang
    Xiaoyu Wang
    Lu Ji
    Zili Yi
    Chunxiang Fu
    Jingcheng Ran
    Ruibo Hu
    Gongke Zhou
    Plant Cell Reports, 2015, 34 : 943 - 958
  • [5] Overexpression of sugarcane gene SoSnRK2.1 confers drought tolerance in transgenic tobacco
    Thi-Thu Phan
    Sun, Bo
    Niu, Jun-Qi
    Tan, Qin-Liang
    Li, Jian
    Yang, Li-Tao
    Li, Yang-Rui
    PLANT CELL REPORTS, 2016, 35 (09) : 1891 - 1905
  • [6] Overexpression of the GmNAC2 Gene, an NAC Transcription Factor, Reduces Abiotic Stress Tolerance in Tobacco
    Jin, Hangxia
    Huang, Fang
    Cheng, Hao
    Song, Haina
    Yu, Deyue
    PLANT MOLECULAR BIOLOGY REPORTER, 2013, 31 (02) : 435 - 442
  • [7] Overexpression of a novel chrysanthemum NAC transcription factor gene enhances salt tolerance in tobacco
    Liu, Qing-Lin
    Xu, Ke-Dong
    Zhao, Liang-Jun
    Pan, Yuan-Zhi
    Jiang, Bei-Bei
    Zhang, Hai-Qing
    Liu, Guang-Li
    BIOTECHNOLOGY LETTERS, 2011, 33 (10) : 2073 - 2082
  • [8] NAC domain transcription factor gene GhNAC3 confers drought tolerance in plants
    Xia, Linjie
    Sun, Simin
    Han, Bei
    Yang, Xiyan
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2023, 195 : 114 - 123
  • [9] Overexpression of MsNAC51 from alfalfa confers drought tolerance in tobacco
    Zhou, Le
    Shi, Kun
    Cui, Xinran
    Wang, Shaopeng
    Jones, Chris S.
    Wang, Zan
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2023, 205
  • [10] Overexpression of Arachis hypogaea NAC3 in tobacco enhances dehydration and drought tolerance by increasing superoxide scavenging
    Liu, Xu
    Liu, Shuai
    Wu, Jiali
    Zhang, Biyu
    Li, Xiaoyun
    Yan, Youchen
    Li, Ling
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2013, 70 : 354 - 359