Multi-subject hierarchical inverse covariance modelling improves estimation of functional brain networks

被引:15
作者
Colclough, Giles L. [1 ,2 ,3 ]
Woolrich, Mark W. [1 ,2 ]
Harrison, Samuel J. [1 ,2 ]
Rojas Lopez, Pedro A. [4 ]
Valdes-Sosa, Pedro A. [4 ,5 ]
Smith, Stephen M. [2 ]
机构
[1] Univ Oxford, Oxford Ctr Human Brain Act OHBA, Wellcome Ctr Integrat Neuroimaging, Dept Psychiat, Oxford, England
[2] Univ Oxford, Oxford Ctr Funct MRI Brain FMRIB, Wellcome Ctr Integrat Neuroimaging, Nuffield Dept Clin Neurosci, Oxford, England
[3] Dept Engn Univ Oxford, Ctr Doctoral Training Healthcare Innovat, Inst Biomed Engn Sci, Oxford, England
[4] Ctr Neurociencias Cuba CNEURO, Neuroinformat Dept, Havana, Cuba
[5] Univ Elect Sci & Technol China, Clin Hosp Chengdu Brain Sci Inst, MOE Key Lab Neuroinformat, Chengdu, Sichuan, Peoples R China
基金
英国工程与自然科学研究理事会; 英国惠康基金;
关键词
fMRI; MEG; Functional connectivity; Gaussian Graphical models; Hierarchical Bayesian models; Concentration graph; Precision model; Inverse covariance model; MCMC; HUMAN CONNECTOME PROJECT; INDEPENDENT COMPONENT ANALYSIS; SPARSE PARTIAL CORRELATION; GAUSSIAN GRAPHICAL MODELS; RESTING STATE NETWORKS; PRIOR DISTRIBUTIONS; WISHART DISTRIBUTIONS; VARIABLE SELECTION; CEREBRAL-CORTEX; ELASTIC NET;
D O I
10.1016/j.neuroimage.2018.04.077
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
A Bayesian model for sparse, hierarchical, inver-covariance estimation is presented, and applied to multi-subject functional connectivity estimation in the human brain. It enables simultaneous inference of the strength of connectivity between brain regions at both subject and population level, and is applicable to fMRI, MEG and EEG data. Two versions of the model can encourage sparse connectivity, either using continuous priors to suppress irrelevant connections, or using an explicit description of the network structure to estimate the connection probability between each pair of regions. A large evaluation of this model, and thirteen methods that represent the state of the art of inverse covariance modelling, is conducted using both simulated and resting-state functional imaging datasets. Our novel Bayesian approach has similar performance to the best extant alternative, Ng et al.'s Sparse Group Gaussian Graphical Model algorithm, which also is based on a hierarchical structure. Using data from the Human Connectome Project, we show that these hierarchical models are able to reduce the measurement error in MEG beta-band functional networks by 10%, producing concomitant increases in estimates of the genetic influence on functional connectivity.
引用
收藏
页码:370 / 384
页数:15
相关论文
共 88 条
[1]  
[Anonymous], ADV NEURAL INFORM PR
[2]  
[Anonymous], 2015, J ROYAL STAT SOC B
[3]   Fast transient networks in spontaneous human brain activity [J].
Baker, Adam P. ;
Brookes, Matthew J. ;
Rezek, Iead A. ;
Smith, Stephen M. ;
Behrens, Timothy ;
Smith, Penny J. Probert ;
Woolrich, Mark .
ELIFE, 2014, 3
[4]   The relationship between spatial configuration and functional connectivity of brain regions [J].
Bijsterbosch, Janine Diane ;
Woolrich, Mark W. ;
Glasser, Matthew F. ;
Robinson, Emma C. ;
Beckmann, Christian F. ;
Van Essen, David C. ;
Harrison, Samuel J. ;
Smith, Stephen M. .
ELIFE, 2018, 7
[5]  
Boyd L., 2004, CONVEX OPTIMIZATION
[6]   Measuring functional connectivity in MEG: A multivariate approach insensitive to linear source leakage [J].
Brookes, M. J. ;
Woolrich, M. W. ;
Barnes, G. R. .
NEUROIMAGE, 2012, 63 (02) :910-920
[7]   Investigating the electrophysiological basis of resting state networks using magnetoencephalography [J].
Brookes, Matthew J. ;
Woolrich, Mark ;
Luckhoo, Henry ;
Price, Darren ;
Hale, Joanne R. ;
Stephenson, Mary C. ;
Barnes, Gareth R. ;
Smith, Stephen M. ;
Morris, Peter G. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (40) :16783-16788
[8]   Complex brain networks: graph theoretical analysis of structural and functional systems [J].
Bullmore, Edward T. ;
Sporns, Olaf .
NATURE REVIEWS NEUROSCIENCE, 2009, 10 (03) :186-198
[9]   The horseshoe estimator for sparse signals [J].
Carvalho, Carlos M. ;
Polson, Nicholas G. ;
Scott, James G. .
BIOMETRIKA, 2010, 97 (02) :465-480
[10]  
Chen Wan., 2020, THESIS