Dual Stabilization and Sacrificial Effect of Na2CO3 for Increasing Capacities of Na-Ion Cells Based on P2-NaxMO2 Electrodes

被引:122
作者
Sathiya, Mariyappan [1 ,2 ]
Thomas, Joy [2 ]
Batuk, Dmitry [1 ,3 ]
Pimenta, Vanessa [1 ]
Gopalan, Raghavan [2 ]
Tarascon, Jean-Marie [1 ,4 ,5 ]
机构
[1] Coll France, 11 Pl Marcelin Berthelot, F-75231 Paris, France
[2] Int Adv Res Ctr Powder Met & New Mat, Ctr Automot Energy Mat, IITM Res Pk, Madras 600113, Tamil Nadu, India
[3] Univ Antwerp, EMAT, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
[4] CNRS, FR 3459, Reseau Stockage Electrochim Energie RS2E, F-80039 Amiens, France
[5] UPMC Univ Paris 06, Sorbonne Univ, 4 Pl Jussieu, F-75005 Paris, France
关键词
ELECTROCHEMICAL PROPERTIES; POSITIVE ELECTRODE; CATHODE MATERIAL; SODIUM; BATTERIES; INSERTION; OXIDES; PHASE; COORDINATION; SUBSTITUTION;
D O I
10.1021/acs.chemmater.7b01542
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sodium ion battery technology is gradually advancing and can be viewed as a viable alternative to lithium ion batteries in niche applications. One of the promising positive electrode candidates is P2 type layered sodium transition metal oxide, which offers attractive sodium ion conductivity. However, the reversible capacity of P2 phases is limited by the inability to directly synthesize stoichiometric compounds with a sodium to transition metal ratio equal to 1. To alleviate this issue, we report herein the in situ synthesis of P2-NaxO2 (x <= 0.7, M = transition metal ions)-Na2CO3 composites. We find that sodium carbonate acts as a sacrificial salt, providing Na+ ion to increase the reversible capacity of the P2 phase in sodium ion full cells, and also as a useful additive that stabilizes the formation of P2 over competing P3 phases. We offer a new phase diagram for tuning the synthesis of the P2 phase under various experimental conditions and demonstrate, by in situ XRD analysis, the role of Na2CO3 as a sodium reservoir in full sodium ion cells. These results provide insights into the practical use of P2 layered materials and can be extended to a variety of other layered phases.
引用
收藏
页码:5948 / 5956
页数:9
相关论文
共 40 条
  • [1] Building better batteries
    Armand, M.
    Tarascon, J. -M.
    [J]. NATURE, 2008, 451 (7179) : 652 - 657
  • [2] Berthelot R, 2011, NAT MATER, V10, P74, DOI [10.1038/nmat2920, 10.1038/NMAT2920]
  • [3] The P2-Na2/3Co2/3Mn1/3O2 phase: structure, physical properties and electrochemical behavior as positive electrode in sodium battery
    Carlier, D.
    Cheng, J. H.
    Berthelot, R.
    Guignard, M.
    Yoncheva, M.
    Stoyanova, R.
    Hwang, B. J.
    Delmas, C.
    [J]. DALTON TRANSACTIONS, 2011, 40 (36) : 9306 - 9312
  • [4] P-type NaxNi0.22Co0.11Mn0.66O2 materials: linking synthesis with structure and electrochemical performance
    Chagas, L. G.
    Buchholz, D.
    Vaalma, C.
    Wu, L.
    Passerini, S.
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (47) : 20263 - 20270
  • [5] DELMAS C, 1976, MATER RES BULL, V11, P1483, DOI 10.1016/0025-5408(76)90098-2
  • [6] ELECTROCHEMICAL INTERCALATION OF SODIUM IN NAXCOO2 BRONZES
    DELMAS, C
    BRACONNIER, JJ
    FOUASSIER, C
    HAGENMULLER, P
    [J]. SOLID STATE IONICS, 1981, 3-4 (AUG) : 165 - 169
  • [7] STRUCTURAL CLASSIFICATION AND PROPERTIES OF THE LAYERED OXIDES
    DELMAS, C
    FOUASSIER, C
    HAGENMULLER, P
    [J]. PHYSICA B & C, 1980, 99 (1-4): : 81 - 85
  • [8] Layered manganese oxide intergrowth electrodes for rechargeable lithium batteries.: 1.: Substitution with Co or Ni
    Dollé, M
    Patoux, S
    Doeff, MM
    [J]. CHEMISTRY OF MATERIALS, 2005, 17 (05) : 1036 - 1043
  • [9] Optimization of Na-Ion Battery Systems Based on Polyanionic or Layered Positive Electrodes and Carbon Anodes
    Dugas, R.
    Zhang, B.
    Rozier, P.
    Tarascon, J. M.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (06) : A867 - A874
  • [10] Phosphate Framework Electrode Materials for Sodium Ion Batteries
    Fang, Yongjin
    Zhang, Jiexin
    Xiao, Lifen
    Ai, Xinping
    Cao, Yuliang
    Yang, Hanxi
    [J]. ADVANCED SCIENCE, 2017, 4 (05):